INORGANIC OXIDE SYNTHESIS FROM ACEH BOVINE BONE USING THE PRECIPITATION METHOD FOR BIOMASS TRANSESTERIFICATION

Authors

  • Nisa Amlia Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115, Indonesia
  • Muliadi Ramli Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115, Indonesia
  • Ratu Balqis Rossani Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115, Indonesia
  • Rara Mitaphonna Research Center for Photonic, National Research and Innovation Agency (BRIN),Tangerang Selatan 15314, Indonesia, Indonesia
  • Surya Lubis Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas  Syiah Kuala, Banda Aceh,23115, Indonesia
  • Nasrullah Idris Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia, 23115, Indonesia
  • Saiful Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas  Syiah Kuala, Banda Aceh,23115, Indonesia
  • Fathurrahmi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas  Syiah Kuala, Banda Aceh,23115, Indonesia

DOI:

https://doi.org/10.21580/wjc.v8i2.28937

Keywords:

nanocatalyst, Inorganic oxide, Bovine Bone, Biodiesel

Abstract

Inorganic oxide nanoparticles synthesized from Aceh bovine bone were successfully prepared using the precipitation method, with pH variations of 8 and 10 adjusted using NH₄OH as the precipitating agent and pH regulator. The resulting nanocatalysts were characterized using XRD, FTIR, and SEM-EDX, and their catalytic activity was evaluated through the transesterification of RBDPO. XRD and FTIR analyses confirmed the presence of hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂), calcium oxide (CaO), and calcium carbonate (CaCO₃) as the main components in catalysts synthesized at pH 8 and pH 10. SEM micrographs revealed spherical particle morphologies, while EDX analysis showed calcium as the dominant element, with contents of 55.44% and 57.19%, respectively. The average crystallite sizes, calculated using the Debye–Scherrer equation, were 31.63 nm (CB-P8C) and 31.31 nm (CB-P10C). Catalytic activity tests demonstrated that the catalyst synthesized at pH 10 exhibited higher performance, achieving a biodiesel yield of 98.11%, compared to 92.66% for the catalyst synthesized at pH 8. Quality assessment of both biodiesel samples confirmed that their acid values, density, and viscosity met the Indonesian National Standard (SNI 04-7182-2015). This approach highlights a sustainable pathway for converting biowaste into efficient catalysts for green fuel production.

Downloads

Download data is not yet available.

Author Biographies

Nisa Amlia, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115

Muliadi Ramli, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115

Ratu Balqis Rossani, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, 23115

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas, Syiah Kuala, Banda Aceh,23115

Rara Mitaphonna, Research Center for Photonic, National Research and Innovation Agency (BRIN),Tangerang Selatan 15314, Indonesia

Research Center for Photonic, National Research and Innovation Agency (BRIN),Tangerang Selatan 15314, Indonesia

Surya Lubis, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas  Syiah Kuala, Banda Aceh,23115

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas  Syiah Kuala, Banda Aceh,23115

Nasrullah Idris, Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia, 23115

Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia, 23115

Saiful, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas  Syiah Kuala, Banda Aceh,23115

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas, Syiah Kuala, Banda Aceh,23115

Fathurrahmi, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas  Syiah Kuala, Banda Aceh,23115

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas, Syiah Kuala, Banda Aceh,23115

References

Adji, N. T. L., Lucytasari, S. D., & Suprihatin, S. (2023). Sintesis dan karakterisasi nanokalsium oksida dari cangkang kerang hijau dengan metode presipitasi. Jurnal Teknik Kimia, 18(1), 65–69 . https://doi.org/10.33005/jurnal_tekkim.v18i1.4127

Amri, A. A., Shorea, Z., & Astuti, C. P. (2024). Synthesis and characterization of nanoparticle calcium oxide (CaO) from blood calm shell by precipitation methods. Advance Sustainable Science, Engineering and Technology, 6(4), 1–8. https://doi.org/10.26877/asset.v6i4.765

Andas, J., & Jusoh, N. F. E. (2022). Converting waste chicken bones into heterogeneous catalyst for biodiesel synthesis from waste cooking oil. Malaysian Journal of Analytical Sciences, 26(5), 1102–1111. 10.17576/jsm-2025-5402-15.

Chukwuemeke, U. W., Eyankware, U. O. R., & Egwunyenga, M. C. (2023). Investigation of the potential of waste bones as a catalyst in biofuel production. Journal of Wastes and Biomass Management, 5(1), 15–21. https://doi.org/10.26480/jwbm.01.2023.15.21

Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., & Kasaby, M. A. (2021). A review on biodiesel feedstocks and production technologies. Journal of the Chilean Chemical Society, 66(1), 5098–5109. https://doi.org/10.4067/S071797072021000105098.

Ghifari, M. I. Al, & Samik, dan S. (2023). Review: Production of biodiesel with transesterification method using catalyst made from waste bone. UNESA Journal of Chemistry, 12(1), 1–11.

Hassan, M. M., & Fadhil, A. B. (2021). Development of an effective solid base catalyst from potassium based chicken bone (K-CBs) composite for biodiesel production from a mixture of non-edible feedstocks. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2, 1–16. https://doi.org/10.1080/15567036.2021.1927253

Hussain, F., Alshahrani, S., Abbas, M. M., Khan, H. M., Jamil, A., Yaqoob, H., Soudagar, M. E. M., Imran, M., Ahmad, M., & Munir, M. (2021). Review waste animal bones as catalysts for biodiesel production; a mini review. Catalysts, 11(5), 1–15. https://doi.org/10.3390/catal11050630

Hussein, M., & Idris, M. (2024). Studi eksperimental titik nyala dan viskositas biodiesel diproduksi dari minyak goreng bekas. IRA Jurnal Teknik Mesin dan Aplikasinya (IRAJTMA), 3(1), 86–92. https://doi.org/10.56862/irajtma.v3i1.101

Khan, H. M., Iqbal, T., Ali, C. H., Javaid, A., & Cheema, I. I. (2020). Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel, 277, 1–10. https://doi.org/10.1016/j.fuel.2020.118091

Kingkam, W., Maisomboon, J., Khamenkit, K., Nuchdang, S., Nilgumhang, K., Issarapanacheewin, S., & Rattanaphra, D. (2024). Preparation of CaO@CeO2 solid base catalysts used for biodiesel production. Catalysts, 14(240), 1–15. https://doi.org/10.3390/catal14040240

Mazaheri, H., Ong, H. C., Amini, Z., Masjuki, H. H., Mofijur, M., Su, C. H., Badruddin, I. A., & Yunus Khan, T. M. (2021). An overview of biodiesel production via calcium oxide based catalysts: Current state and perspective. Energies, 14(13), 1–23. https://doi.org/10.3390/en14133950

Mengistu, T. G., & Reshad, S. A. (2022). Synthesis and characterization of a heterogeneous catalyst from a mixture of waste animal teeth and bone for castor seed oil biodiesel production. Heliyon, 8(6), 1–14. https://doi.org/10.1016/j.heliyon.2022.e09724

Naseef, H. H., & Tulaimat, R. H. (2025). Transesterification and esterification for biodiesel production: A comprehensive review of catalysts and palm oil feedstocks. In Energy Conversion and Management: X, X(26), 1-42. https://doi.org/10.1016/j.ecmx.2025.100931

Osman, A. I., Nasr, M., Farghali, M., Rashwan, A. K., Abdelkader, A., Al-Muhtaseb, A. H., Ihara, I., & Rooney, D. W. (2024). Optimizing biodiesel production from waste with computational chemistry, machine learning and policy insights: a review. Environmental Chemistry Letters, 22(3), 1005–1071. https://doi.org/10.1007/s10311-024-01700-y

Permanasari, A. R., Sihombing, R. P., Hidayatulloh, C. Y., Al-Ayubi, S., Fhmi, R. M., Kautsar, M. F. W., & Wibisono, W. (2022). The effec of precipitation pH and temperature of the Mg/Al Hydrotalcite synthesis on the glucose isomerization. International Journal Applied Technology Research, 3(1), 22–35. https://doi.org/10.35313/ijatr.v3i1.55

Prayitno, A., Prasetyo, B., & Sutirtoadi, A. (2020). Synthesis and characteristics of nano calcium oxide from duck eggshells by precipitation method. Second International Conference on Food and Agriculture 2019, 1–6. https://doi.org/10.1088/1755-1315/411/1/012033

Putri, D. R., Irwan, M., & Nadir, M. (2024). Pengaruh jenis katalis pada pembuatan biodiesel dari minyak jelantah. Dalton: Jurnal Pendidikan Kimia dan Ilmu Kimia, 7(2), 109–114. http://dx.doi.org/10.31602/dl.v7i2.15158

Ramli, M., Saiful, S., Febriani, F., Amraini, A., Fathurrahmi, F., Shellatina, S., & Zuhra, C. F. (2020). Calcined aceh bovine bone (Bos indicus) intercalated lithium as an inorganic base catalyst for transesterification of castor oil. Aceh International Journal of Science and Technology, 9(1), 22–28. https://doi.org/10.13170/aijst.9.1.16622

Safitri, T. R., & Puryanti, D. (2020). pengaruh konsentrasi nh4oh terhadap ukuran nanopartikel nikel ferit (NiFe2O4) yang disintesis dengan metode kopresipitasi. Jurnal Fisika Unand, 9(3), 318–322. https://doi.org/10.25077/jfu.9.3.318-322.2020

Shabani, M., & Faraji, G. (2020). Processing and characterization of natural hydroxyapatite powder from bovine bone a. Journal of Ultrafine Grained and Nanostructured Materials, 53(2), 204–209. https://doi.org/10.22059/jufgnsm.2020.02.12

Sunardi, S., Krismawati, E. D., & Mahayana, A. (2020). sintesis dan karakterisasi nanokalsium oksida dari cangkang telur. ALCHEMY Jurnal Penelitian Kimia, 16(2), 250–259. https://doi.org/10.20961/alchemy.16.2.40527.250-259

Downloads

Published

2025-12-17

How to Cite

Amlia, N., Ramli, M., Rossani, R. B., Mitaphonna, R., Lubis, S., Idris, N., … Fathurrahmi. (2025). INORGANIC OXIDE SYNTHESIS FROM ACEH BOVINE BONE USING THE PRECIPITATION METHOD FOR BIOMASS TRANSESTERIFICATION. Walisongo Journal of Chemistry, 8(2), 306–316. https://doi.org/10.21580/wjc.v8i2.28937