3D And 2D RNA Structure Prediction Of The BRCA2 Gene And Its Silencing RNA In The Breast Cancer

Authors

  • Ryan Wijaya Department of Bioinformatics School of Life Sciences Indonesia International Institute for Life Sciences, Indonesia
  • Arli Aditya Parikesit Department of Bioinformatics School of Life Sciences Indonesia International Institute for Life Sciences, Indonesia http://orcid.org/0000-0001-8716-3926
  • Rizky Nurdiansyah Department of Bioinformatics School of Life Sciences Indonesia International Institute for Life Sciences, Indonesia

DOI:

https://doi.org/10.21580/wjc.v3i1.6019

Keywords:

BRCA, Bioinformatics, Breast Cancer, Molecular Simulation, Gene Networking

Abstract

Breast cancer is one of the most threatening diseases for women. It is found that BRCA2 gene plays a significant role in breast cancer, provided that mutations occurred. The objective of this study is to determine whether the bioinformatics approach could provide the gene networking, molecular simulation, and computational metabolomics information to shed the relation between BRCA2 gene mutation with breast cancer progression. The methods are utilizing molecular simulation tools to comprehend the biochemical interaction of BRCA2 gene with other oncogenic genes. Lastly, the molecular docking tool is devised to provide the molecular interactions information. It could be implied that the Computer-Aided Drug Design (CADD)-based in silico transcriptomics tools could provide the fine-grained information on the exact role of BRCA2 gene in the progression of breast cancer. The clinical impact of this study could only be measured after the wet laboratory experiment is conducted to validate the computational approach results

Downloads

Download data is not yet available.

Author Biography

Arli Aditya Parikesit, Department of Bioinformatics School of Life Sciences Indonesia International Institute for Life Sciences

Head of Bioinformatics Department

References

Anurogo, D., Parikesit, A.A., Ikrar, T., 2019. LncRNAs in CONDBITs Perspectives, From Genetics towards Theranostics. J. Sains Kesihat. Malaysia 17, 1–16. https://doi.org/10.17576/jskm-2019-1702-01

Arifin, M.Z., Agustriawan, D., Parikesit, A.A.P., 2020. Molecular simulation oF MDM2 and E6AP proteins as P53 regulator in cervical cancer. Biointerface Res. Appl. Chem. 10, 5875–5879. https://doi.org/10.33263/BRIAC104.875879

Bonofiglio, D., Giordano, C., De Amicis, F., Lanzino, M., Andò, S., 2016. Natural Products as Promising Antitumoral Agents in Breast Cancer: Mechanisms of Action and Molecular Targets. Mini-Reviews Med. Chem. 16, 596–604. https://doi.org/10.2174/1389557515666150709110959

Burnett, J.C., Rossi, J.J., 2012. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 19, 60–71. https://doi.org/10.1016/j.chembiol.2011.12.008

Cherigo, L., Lopez, D., Martinez-Luis, S., 2015. Marine natural products as breast cancer resistance protein inhibitors. Mar. Drugs. https://doi.org/10.3390/md13042010

Cleator, S., Heller, W., Coombes, R.C., 2007. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 8, 235–244. https://doi.org/10.1016/S1470-2045(07)70074-8

Davis, B.K., 1998. The forces driving molecular evolution. Prog. Biophys. Mol. Biol. 69, 83–150. https://doi.org/10.1016/S0079-6107(97)00034-5

Eigen, M., McCaskill, J., Schuster, P., 1988. Molecular quasi-species. J. Phys. Chem. 92, 6881–6891. https://doi.org/10.1021/j100335a010

Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, T., Wolfinger, M.T., 2002. Barrier Trees of Degenerate Landscapes. Zeitschrift für Phys. Chemie 216, 155. https://doi.org/10.1524/zpch.2002.216.2.155

Goncalves, R., Warner, W.A., Luo, J., Ellis, M.J., 2014. New concepts in breast cancer genomics and genetics. Breast Cancer Res. https://doi.org/10.1186/s13058-014-0460-4

Gruber, A.R., Lorenz, R., Bernhart, S.H., Neuböck, R., Hofacker, I.L., 2008. The Vienna RNA websuite. Nucleic Acids Res. 36. https://doi.org/10.1093/nar/gkn188

Hashem, Y., Auffinger, P., 2009. A short guide for molecular dynamics simulations of RNA systems. Methods 47, 187–197. https://doi.org/10.1016/j.ymeth.2008.09.020

Hedau, S., Batra, M., Singh, U., Bharti, A., Ray, A., Das, B., 2015. Expression of BRCA1 and BRCA2 proteins and their correlation with clinical staging in breast cancer. J. Cancer Res. Ther. https://doi.org/10.4103/0973-1482.140985

Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S., 2017. The ClusPro web server for protein-protein docking. Nat. Protoc. https://doi.org/10.1038/nprot.2016.169

Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., Hofacker, I.L., 2011. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26. https://doi.org/10.1186/1748-7188-6-26

McDowell, S.E., Spacková, N., Sponer, J., Walter, N.G., 2007. Molecular dynamics simulations of RNA: an in silico single molecule approach. Biopolymers 85, 169–84. https://doi.org/10.1002/bip.20620

Parikesit, A.A., 2018. The Construction of Two and Three Dimensional Molecular Models for the miR-31 and Its Silencer as the Triple Negative Breast Cancer Biomarkers. Online J. Biol. Sci. 18, 424–431. https://doi.org/10.3844/ojbsci.2018.424.431

Parikesit, A.A., Agustriawan, D., Nurdiansyah, R., 2020. Protein Annotation of Breast-cancer-related Proteins with Machine-learning Tools. Makara J. Sci. 24, 6. https://doi.org/10.7454/mss.v24i1.12106

Parikesit, A.A., Agustriawan, D., Nurdiansyah, R., 2018a. Telaah Sistematis Diagnosis dan Pengobatan Kanker Payudara Berbasis Transkriptomik, in: PROSIDING SEMINAR NASIONAL BIOLOGI 2018. FMIPA UNESA, Surabaya, pp. 438–443.

Parikesit, A.A., Utomo, D.H., Karimah, N., 2018b. Determination of secondary and tertiary structures of cervical cancer lncRNA diagnostic and siRNA therapeutic biomarkers. Indones. J. Biotechnol. 23, 1. https://doi.org/10.22146/ijbiotech.28508

Peshkin, B.N., Alabek, M.L., Isaacs, C., 2010. BRCA1/2 mutations and triple negative breast cancers. Breast Dis. 32, 25–33. https://doi.org/10.3233/BD-2010-0306

Petrovic, N., Davidovic, R., Bajic, V., Obradovic, M., Isenovic, R.E., 2017. MicroRNA in breast cancer: The association with BRCA1/2. Cancer Biomarkers. https://doi.org/10.3233/CBM-160319

Rother, M., Milanowska, K., Puton, T., Jeleniewicz, J., Rother, K., Bujnicki, J.M., 2011. ModeRNA server: an online tool for modeling RNA 3D structures. Bioinformatics 27, 2441–2442. https://doi.org/10.1093/bioinformatics/btr400

Spicer, J., 2005. Technology evaluation: nimotuzumab, the Center of Molecular Immunology/YM BioSciences/Oncoscience. Curr. Opin. Mol. Ther. 7, 182–91.

Šponer, J., Bussi, G., Krepl, M., Banáš, P., Bottaro, S., Cunha, R.A., Gil-Ley, A., Pinamonti, G., Poblete, S., Jurečka, P., Walter, N.G., Otyepka, M., 2018. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 118, 4177–4338. https://doi.org/10.1021/acs.chemrev.7b00427

Surveillance Epidemiology and End Results Program, 2019. Cancer Stat Facts: Female Breast Cancer. Natl. Cancer Inst. 1–10.

Tafer, H., Ameres, S.L., Obernosterer, G., Gebeshuber, C.A., Schroeder, R., Martinez, J., Hofacker, I.L., 2008. The impact of target site accessibility on the design of effective siRNAs. Nat. Biotechnol. 26, 578–83. https://doi.org/10.1038/nbt1404

TBI, 2016. Vienna RNA Package Web Version 2.0 [WWW Document]. URL http://rna.tbi.univie.ac.at/#intro

Valeska, M.D., Adisurja, G.P., Bernard, S., Wijaya, R., Aldino, M., Parikesit, A.A., 2019. The Role of Bioinformatics in Personalized Medicine: Your Future Medical Treatment. Cermin Dunia Kedokt. 46, 785–788.

Wheeler, N.J., Agbedanu, P.N., Kimber, M.J., Ribeiro, Paula, Day, T.A., Zamanian, M., Werf, M., Vlas, S., Brooker, S., Looman, C., Nagelkerke, N., Habbema, J., Engels, D., Murray, C., Vos, T., Lozano, R., Naghavi, M., Flaxman, A., Michaud, C., Wang, W., Wang, L., Liang, Y.-S., Gilbert, I., Chen, B., Wen, J.-F., Scimone, M., Kravarik, K., Lapan, S., Reddien, P, Zhang, J., Yuan, Z., Zheng, M., Sun, Y., Wang, Y., Yang, S., Evans, D., Owlarn, S., Romero, B.T., Chen, C., Aboobaker, A., Reddien, PW, Bermange, A., Murfitt, K., Jennings, J., Alvarado, A.S., Collins, J., Hou, X., Romanova, E., Lambrus, B., Miller, C., Saberi, A., Sweedler, J., Newmark, P, Gilleard, J., Robb, S., Ross, E., Sa, A., Abril, J., Cebri’a, F., Rodrıguez-Esteban, G., Horn, T., Fraguas, S., Calvo, B., Bartscherer, K., Sal’o, E., Galloni, M., Resch, A., Palakodeti, D., Lu, Y.-C., Horowitz, M., Graveley, B., Solana, J., Kao, D., Mihaylova, Y., Jaber-Hijazi, F., Malla, S., Wilson, R., Aboobaker, A., Nishimura, O., Hirao, Y., Tarui, H., Agata, K., Garcia-Fernandez, J., Ram, J., Mar-any, G., Mun, A., Kreshchenko, N., Pag’an, O., Deats, S., Baker, D., Montgomery, E., Wilk, G., Tenaglia, M., Semon, J., Ramakrishnan, L., Amatya, C., DeSaer, C., Dalhoff, Z., Eggerichs, M., Magoč, T., Salzberg, S., Grabherr, M., Haas, B., Yassour, M., Zerbino, D., Birney, E., Schulz, M., Zerbino, D., Vingron, M., Birney, E., Langmead, B., Trapnell, C., Pop, M., Salzberg, S., Li, B., Dewey, C., Li, W., Godzik, A., Conesa, A., G’otz, S., Garc’ıa-G’omez, J., Terol, J., Tal’on, M., Robles, M., Lechner, M., Findeiss, S., Steiner, L., Marz, M., Stadler, P., Prohaska, S., Logan-Klumpler, F., Silva, N., Boehme, U., Rogers, M., Velarde, G., McQuillan, J., Carver, T., Aslett, M., Olsen, C., Subramanian, S., Phan, I., Farris, C., Mitra, S., Ramasamy, G., Wang, H., Tivey, A., Jackson, A., Houston, R., Parkhill, J., Holden, M., Harb, O., Brunk, B., Myler, P., Roos, D., Carrington, M., Smith, D., Hertz-Fowler, C., Berriman, M., Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S., Marra, M., Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T., Pruitt, K., Brown, G., Hiatt, S., Thibaud-Nissen, F., Astashyn, A., Ermolaeva, O., Farrell, C., Hart, J., Landrum, M., McGarvey, K., Murphy, M., Rask-Andersen, M., Alm’en, M., Schïoth, H., Milligan, J., Jolly, E., Schneider, C., Rasband, W., Eliceiri, K., Noldus, L., Spink, A., Tegelenbosch, R., Koressaar, T., Remm, M., Rouhana, L., Weiss, J., Forsthoefel, D., Lee, H., King, R., Inoue, T., Shibata, N., Agata, K., Newmark, P, Kao, D., Felix, D., Aboobaker, A., Patocka, N., Ribeiro, P, Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., Hunter, S., Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., Hetrick, B., Han, M., Helgeson, L., Nolen, B., Nogi, T., Zhang, D., Chan, J., Marchant, J., Crowther, G., Shanmugam, D., Carmona, S., Doyle, M., Hertz-Fowler, C., Berriman, M., Nwaka, S., Wang, B., Collins, J., Newmark, PA, 2015. Functional analysis of Girardia tigrina transcriptome seeds pipeline for anthelmintic target discovery. Parasit. Vectors 8, 34. https://doi.org/10.1186/s13071-014-0622-3

WHO, 2015. WHO | Breast cancer: prevention and control [WWW Document]. WHO. URL https://www.who.int/cancer/detection/breastcancer/en/

Wolfinger, M.T., Svrcek-Seiler, W.A., Flamm, C., Hofacker, I.L., Stadler, P.F., 2004. Efficient computation of RNA folding dynamics. J. Phys. A. Math. Gen. 37, 4731–4741. https://doi.org/10.1088/0305-4470/37/17/005

Wu, D., Rice, C.M., Wang, X., 2012. Cancer bioinformatics: A new approach to systems clinical medicine. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-13-71

Zaleska, K., 2015. MiRNA - Therapeutic tool in breast cancer? Where are we now? Reports Pract. Oncol. Radiother. https://doi.org/10.1016/j.rpor.2014.10.009

Downloads

Additional Files

Published

2020-08-14