Toward Novel Antioxidant Drugs: Quantitative Structure-Activity Relationship Study of Eugenol Derivatives

Authors

  • Priyagung Dhemi Widiakongko Universitas Islam Negeri Sunan Kalijaga, Yogyakarta, Indonesia
  • Karisma Triatmaja Universitas Islam Negeri Sunan Kalijaga, Yogyakarta, Indonesia

DOI:

https://doi.org/10.21580/wjc.v4i2.9228

Keywords:

QSAR analysis, Eugenol Derivatives, Antioxidant Activity, Novel Antioxidant drugs

Abstract

The study of the Quantitative Structure-Activity Relationship (QSAR) of eugenol compound and its derivatives towards antioxidant activities was conducted using electronic and molecular descriptors. These descriptors were generated from semi-empirical chemical computation with PM3 level of theory. The QSAR model in this research could be used to predict novel antioxidant compounds which are more potent. The activity of the compound determined based on the IC50 value (Inhibition Concentration 50%) was linked with the descriptor results that had been calculated in a QSAR equation. The data showed that the descriptors that had a significant effect were a net charge of C-6, C-7, O-12, and HOMO energy and hydration energy. The best QSAR equations obtained with these descriptors and their parameters are shown as follows.

log1/IC50 = - 3,3026 (± 0,4066) qC6 - 4,7450 (± 0,7224) qC7 + 3,2746 (± 0,6752) qO12 + 0,6326 (± 0,0645) HOMO - 0,0086 (± 0,0011) hydration energy + 4,8053 (± 0,6336)

(n = 8 ; R = 1,000 ; s = 0,004 ; F = 3655,537 ; p = 0,0003 ; Q2 = 0,988 ; SPress = 0,039 ; SDEP = 0,021)

Downloads

Download data is not yet available.

Author Biographies

Priyagung Dhemi Widiakongko, Universitas Islam Negeri Sunan Kalijaga, Yogyakarta

Department of Chemistry, Faculty of Science and Technology

Karisma Triatmaja, Universitas Islam Negeri Sunan Kalijaga, Yogyakarta

Department of Chemistry, Faculty of Science and Technology

References

Amanda, K. A., Mustofa, S., & Nasution, S. H. (2019). Review Efek Antioksidan pada Kemuning ( Murraya paniculata ( L .) Jack ). Majority, 8(2), 265–272.

Arifin, B., & Ibrahim, S. (2018). Struktur, Bioaktivitas Dan Antioksidan Flavonoid. Jurnal Zarah, 6(1), 21–29. https://doi.org/10.31629/zarah.v6i1.313

Cortes, E., Mora, J., & Márquez, E. (2020). Modelling the anti-methicillin-resistant staphylococcus aureus (MRSA) activity of cannabinoids: A QSAR and docking study. Crystals, 10(8), 1–20. https://doi.org/10.3390/cryst10080692

De Oliveira, D. B., & Gaudio, A. C. (2001). BuildQSAR: A new computer program for QSAR analysis. Quantitative Structure-Activity Relationships, 19(6), 599–601. https://doi.org/10.1002/1521-3838(200012)19:6<599::AID-QSAR599>3.0.CO;2-B

Da Silva, F. F. M., Monte, F. J. Q., de Lemos, T. L. G., do Nascimento, P. G. G., de Medeiros Costa, A. K., & de Paiva, L. M. M. (2018). Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chemistry Central Journal, 12(1), 1–9. https://doi.org/10.1186/s13065-018-0407-4

Dhiman, P., Malik, N., & Khatkar, A. (2019). Lead optimization for promising monoamine oxidase inhibitor from eugenol for the treatment of neurological disorder: Synthesis and in silico based study. BMC Chemistry, 13(3), 1–20. https://doi.org/10.1186/s13065-019-0552-4

Hanifa, D., & Susilawati, Y. (2017). Potensi Tanaman Gandaria (Bouea Macrophylla Griff) Sebagai Obat Herbal Yang Beraktivitas Antioksidan. Farmaka, 15(Vol 15, No 3 (2017): Farmaka), 134–142. http://jurnal.unpad.ac.id/farmaka/article/view/13559

Hussain, Z., Thu, H. E., Amjad, M. W., Hussain, F., Ahmed, T. A., & Khan, S. (2017). Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Materials Science and Engineering C, 77(November), 1316–1326. https://doi.org/10.1016/j.msec.2017.03.226

Julianus Sohilait, H., & Kainama, H. (2019). Free Radical Scavenging Activity of Essential Oil of Eugenia caryophylata from Amboina Island and Derivatives of Eugenol. Open Chemistry, 17(1), 422–428. https://doi.org/10.1515/chem-2019-0047

Kubinyi, H. (1997). QSAR and 3D QSAR in drug design. Part 1: Methodology. Drug Discovery Today, 2(11), 457–467. https://doi.org/10.1016/S1359-6446(97)01079-9

Matysiak, J., & Niewiadomy, A. (2017). QSAR models of antiproliferative activity of imidazo[2,1-b][1,3,4]thiadiazoles in various cancer cell lines. Molecular Diversity, 21(1), 211–218. https://doi.org/10.1007/s11030-016-9705-8

Muhammad Rashidi Wahab, M. F. A. (2013). Jurnal Teknologi. Jurnal Teknologi, 7, 31–39.

Mumpuni, E., & Mulatsari, E. (2017). QSAR analysis on apigenin derivative compounds as antioxidant using semiempirical austin model 1. Asian Journal of Chemistry, 29(7), 1499–1505. https://doi.org/10.14233/ajchem.2017.20535

Ribaudo, G., Bortoli, M., Pavan, C., Zagotto, G., & Orian, L. (2020). Antioxidant potential of psychotropic drugs: From clinical evidence to in vitro and in vivo assessment and toward a new challenge for in silico molecular design. Antioxidants, 9(8), 1–22. https://doi.org/10.3390/antiox9080714

Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR Models - Strategies and Importance. International Journal of Drug Design and Disocovery, 2(3), 511–519

Downloads

Published

2021-12-15