Gas Chromatography-Mass Spectrometry Analysis and α-Glucosidase Inhibitory Activity of n-Hexane Extract of Bilajang Bulu (Merremia Vitifolia) Leaves
DOI:
https://doi.org/10.21580/wjc.v4i2.9427Keywords:
GC-MS, Inhibition of α-glucosidase, Merremia vitifolia, PhytolAbstract
One of the most effective treatments for diabetes mellitus is to inhibit α-glucosidase, which inhibits glucose absorption by the epithelium membrane of the small intestine. In South Sulawesi, Indonesia, Merremia vitifolia is used as a traditional medicine for the treatment of diabetes. The aims of this study are to (1) assess the extract's ability to inhibit α - glucosidase and (2) identify volatile organic compounds in n-hexane of Merremia vitifolia extract. Extraction was conducted by maceration. The inhibitory activity of quercetin towards α-glucosidase has the IC50 = 2.53 ± 0.16 µg/mL, and by n-Hexane extract of Merremia vitifolia leaves has the IC50 = 14.4 ± 1.52 µg/mL. Then, n-Hexane extract of Merremia vitifolia leaves has strong α-glucosidase inhibitory activity. The compounds that have been identified based on Gas Chromatography-Mass Spectrometry (GC-MS) analysis with similarity index ≥ 89% which are caryophyllene (0.94%), (E)-β-famesene (4.72%), neophytadiene (9.78%), phytol (65.94%), 9,12,15-octadecatrienoic acid (6.71%), 1,5-cyclodecadiene (6.76%), squalene (4.48%), stigmasterol (4.08%), γ-sitosterol (10.20%), Serratol (23.12%), vitamin E (2.78%) and lup-20(29)-en-3-one (21.04%). Based on a literature study, the presence of phytol, neophytadiene, β-caryophyllene, stigmasterol, γ-sitosterol, and lup-20(29)-en-3-one have contributed to the strong α-glucosidase inhibitory activity of n-Hexane extract of Merremia vitifolia leaves.Downloads
References
Akter, S., Jahan, I., Khatun, M. R., Khan, M. F., Arshad, L., Jakaria, M., Haque, M. A. (2021). Pharmacological insights into Merremia vitifolia (Burm.f.) Hallier f. leaf for its antioxidant, thrombolytic, anti-arthritic and anti-nociceptive potential. Biosci Rep, 41 (1): BSR20203022. doi: https://doi.org/10.1042/BSR20203022
Bento, A. F., Claudino, R. F., Dutra, R. C., Marcon, R., & Calixto, J. B. (2011). Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. Journal of Immunology (Baltimore, Md. : 1950), 187(4), 1957–1969. https://doi.org/10.4049/jimmunol.1101305
Chowdhury, R. R., & Ghosh, S. K. (2012). Phytolderived novel isoprenoid immunostimulants. Frontiers in Immunology, 3(MAR), 1–11. https://doi.org/10.3389/fimmu.2012.00049
Ganjir, M., Behera, D. R., & Bhatnagar, S. (2013). Phytochemical Analysis, Cytotoxic And Antioxidant Potential Of Ipomoea Pes Caprae(L)R.Br And Merremia Umbellata(L.)H. Hallier. Phytochemical Analysis, Cytotoxic And Antioxidant Potential Of Ipomoea Pes Caprae(L)R.Br And Merremia Umbellata(L.)H. Hallier., 2(5), 80–83.
Gawade, B., & Farooqui, M. (2017). Alpha-Amylase Inhibitory Assay of Argemone mexicana L. Leaves. Available Online Www.Jocpr.Com Journal of Chemical and Pharmaceutical Research, 9(12), 25–29. www.jocpr.com
GBIF Secretariat. (2019). M. vitifolia (Burm.fil.) Hall.fil. https://doi.org/https://doi.org/10.15468/39omei
Hasanah, E., Ayu, N. K., & Puspita, D. (2020). Activity Test of Leaf Ethanol Extract Bilajang Bulu Merremia Vitifolia Against Staphylococcus Aureus Bacteria. Al-Kimia, 8(1), 29–35. https://doi.org/10.24252/al-kimiav8i1.6368
Hasanah, E., Ayu, N. K., Puspita, D., & Sukarti, S. (2019). Analysis of Flavaniod Content From Extract Ethanol Bilajang Bulu Leaf (Merremia vitifolia). Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 12(1), 73. https://doi.org/10.20956/ica.v12i1.6456
Hu, Y., Zeng, Z., Wang, B., & Guo, S. (2017). Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells. International Immunopharmacology, 51, 91–98. https://doi.org/10.1016/j.intimp.2017.07.009
Indrianingsih, A. W., Tachibana, S., & Itoh, K. (2015). In Vitro Evaluation of Antioxidant and α-Glucosidase Inhibitory Assay of Several Tropical and Subtropical Plants. Procedia Environmental Sciences, 28(SustaiN 2014), 639–648. https://doi.org/10.1016/j.proenv.2015.07.075
Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., Chandra Shill, M., Karmakar, U. K., Yarla, N. S., Khan, I. N., Billah, M. M., Pieczynska, M. D., Zengin, G., Malainer, C., Nicoletti, F., Gulei, D., Berindan-Neagoe, I., Apostolov, A., Banach, M., … Atanasov, A. G. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 121, 82–94. https://doi.org/10.1016/j.fct.2018.08.032
Kumar, S., Kumar, V., & Prakash, O. (2013). Enzymes Inhibition and Antidiabetic Effect of Isolated Constituents from Dillenia indica. BioMed Research International, 2013, 1–7.
Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19–29. https://doi.org/10.4103/0973-7847.79096
Kumawat, V. S., & Kaur, G. (2019). Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. European Journal of Pharmacology, 862, 172628. https://doi.org/https://doi.org/10.1016/j.ejphar.2019.172628
Munasaroh, S., Tamat, S. R., & Dewi, R. T. (2018). Isolation and identification of a-glucosidase inhibitor from aspergillus terreus F38. Indonesian Journal of Pharmacy, 29(2), 74–79. https://doi.org/10.14499/indonesianjpharm29iss2pp74
Murugesu, S., Ibrahim, Z., Ahmed, Q., Yusoff, N. N., Uzir, B., Perumal, V., Abas, F., & Saari, K. (2018). Clinacanthus nutans Lindau Leaves by Gas Metabolomics and Molecular Docking Simulation. Molecules, 23(2402), 1–21. https://doi.org/10.3390/molecules23092402
Nokhala, A., Siddiqui, M. J., Ahmed, Q. U., Safwan, M., Bustamam, A., & Zakaria, Z. A. (2020). Investigation of α -Glucosidase Inhibitory Metabolites from Tetracera scandens Leaves by GC – MS Metabolite Profiling and Docking Studies. Biomolecules, 10(287), 1–17.
Oliveira, C. C. de, Oliveira, C. V. de, Grigoletto, J., Ribeiro, L. R., Funck, V. R., Grauncke, A. C. B., Souza, T. L. de, Souto, N. S., Furian, A. F., Menezes, I. R. A., & Oliveira, M. S. (2016). Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy and Behavior, 56, 26–31. https://doi.org/10.1016/j.yebeh.2015.12.040
Oso, B. J., & Olaoye, I. F. (2020). Comparative in vitro studies of antiglycemic potentials and molecular docking of Ageratum conyzoides L. and Phyllanthus amarus L. methanolic extracts. SN Applied Sciences, 2(4), 1–13. https://doi.org/10.1007/s42452-020-2275-5
Passos, J. L., Almeida Barbosa, L. C., Demuner, A. J., Alvarenga, E. S., Da Silva, C. M., & Barreto, R. W. (2012). Chemical characterization of volatile compounds of lantana camara l. and l. radula sw. and their antifungal activity. Molecules, 17(10), 11447–11455. https://doi.org/10.3390/molecules171011447
Pejin, B., Kojić, V., & Bogdanovic, G. (2014). An insight into the cytotoxic activity of phytol at in vitro conditions. Natural Product Research, 28, 1–4. https://doi.org/10.1080/14786419.2014.921686
Phatangare, N. D., Deshmukh, K. K., Murade, V. D., Naikwadi, P. H., Hase, D. P., Chavhan, M. J., & Velis, H. E. (2017). Isolation and Characterization of β-Sitosterol from Justicia gendarussa burm. F.-An Anti-Inflammatory Compound. International Journal of Pharmacognosy and Phytochemical Research, 9(09), 864–872. https://doi.org/10.25258/phyto.v9i09.10317
Polanco-Hernández, G., Escalante-Erosa, F., García-Sosa, K., Chan-Bacab, M. J., Sagua-Franco, H., González, J., Osorio-Rodríguez, L., & Peña-Rodríguez, L. M. (2012). Metabolites from the leaf extract of Serjania yucatanensis with trypanocidal activity against Trypanosoma cruzi. Parasitology Research, 111(1), 451–455. https://doi.org/10.1007/s00436-012-2861-6
Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503
Santos, C. C. de M. P., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A. C., de Oliveira, G. A. L., Costa, J. P., de Sousa, D. P., de Freitas, R. M., & de Almeida, R. N. (2013). Antinociceptive and Antioxidant Activities of Phytol In Vivo and In Vitro Models. Neuroscience Journal, 2013, 949452. https://doi.org/10.1155/2013/949452
Schmidt, T. J., Kaiser, M., & Brun, R. (2011). Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata, and evaluation of its antiprotozoal activity. In Planta medica (Vol. 77, Issue 8, pp. 849–850). https://doi.org/10.1055/s-0030-1250612
Shan, J., Chen, L., & Lu, K. (2017). Protective effects of trans-caryophyllene on maintaining osteoblast function. IUBMB Life, 69(1), 22–29. https://doi.org/10.1002/iub.1584
Sirikhansaeng, P., Tanee, T., Sudmoon, R., & Chaveerach, A. (2017). Major Phytochemical as γ-Sitosterol Disclosing and Toxicity Testing in Lagerstroemia Species. Evidence-Based Complementary and Alternative Medicine, 2017, 7209851. https://doi.org/10.1155/2017/7209851
Tabana, Y., Dahham, S., Tabana, Y., Iqbal, M. A., Ahamed, M. B. K., Ezzat, M. O., Abdul Majid, A. S., & Abdul Majid, A. M. S. (2015). The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. https://doi.org/10.13140/RG.2.1.3843.9523
Tahya, C. Y., Tiwery, E., Monaten, M. G., & Lumbantoruan, T. K. J. (2020). Identifikasi Fitosterol dengan Kromatografi Gas – Spektrometer Massa pada Ekstrak Kloroform Biji Buah Atung ( Parinarium Glaberimum Hassk). 4(1), 14–20. https://doi.org/10.17977/um0260v4i12020p014
Tsai, F. S., Lin, L. W., & Wu, C. R. (2016). Lupeol and its role in chronic diseases. In Advances in Experimental Medicine and Biology (Vol. 929, pp. 145–175). Springer New York LLC. https://doi.org/10.1007/978-3-319-41342-6_7
Tualeka, A., Mapanawang, A. L., Petrus, H. C., & Gambe, A. (2018). Idetification of Phytol Compounds Contained in The Methanol Extract of Dragon Tail Leaves. International Journal of Health Medicine and Current Research, 3(03), 999–1003. https://doi.org/10.22301/IJHMCR.2528-3189.999
Yin, Z., Zhang, W., Feng, F., Zhang, Y., & Kang, W. (2014). α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 3(3), 136–174. https://doi.org/https://doi.org/10.1016/j.fshw.2014.11.003
Zahratunnisa, N., Elya, B., & Noviani, A. (2017). Inhibition of Alpha-Glucosidase and antioxidant test of stem bark extracts of garcinia fruticosa lauterb. Pharmacognosy Journal, 9(2), 273–275. https://doi.org/10.5530/pj.2017.2.46
Downloads
Published
Issue
Section
License
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Therefore, the author must submit a statement of the Copyright Transfer Agreement.*)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform or build upon the material, authors must distribute their contributions under the same license as the original.
*) Authors whose articles are accepted for publication will receive confirmation via email to send a Copyright Transfer Agreement.