Gas Chromatography-Mass Spectrometry Analysis and α-Glucosidase Inhibitory Activity of n-Hexane Extract of Bilajang Bulu (Merremia Vitifolia) Leaves

Authors

  • Candra Yulius Tahya Universitas Pelita Harapan
  • Karnelasatri Karnelasatri Universitas Pelita Harapan

DOI:

https://doi.org/10.21580/wjc.v4i2.9427

Keywords:

GC-MS, Inhibition of α-glucosidase, Merremia vitifolia, Phytol

Abstract

One of the most effective treatments for diabetes mellitus is to inhibit α-glucosidase, which inhibits glucose absorption by the epithelium membrane of the small intestine. In South Sulawesi, Indonesia, Merremia vitifolia is used as a traditional medicine for the treatment of diabetes.  The aims of this study are to (1) assess the extract's ability to inhibit α - glucosidase and (2) identify volatile organic compounds in n-hexane of Merremia vitifolia extract. Extraction was conducted by maceration.  The inhibitory activity of quercetin towards α-glucosidase has the IC50 = 2.53 ± 0.16 µg/mL, and by n-Hexane extract of Merremia vitifolia leaves has the IC50 = 14.4 ± 1.52 µg/mL.  Then, n-Hexane extract of Merremia vitifolia leaves has strong α-glucosidase inhibitory activity. The compounds that have been identified based on Gas Chromatography-Mass Spectrometry (GC-MS) analysis with similarity index ≥ 89% which are caryophyllene (0.94%), (E)-β-famesene (4.72%), neophytadiene (9.78%), phytol (65.94%), 9,12,15-octadecatrienoic acid (6.71%), 1,5-cyclodecadiene (6.76%), squalene (4.48%), stigmasterol (4.08%), γ-sitosterol (10.20%), Serratol (23.12%), vitamin E (2.78%) and lup-20(29)-en-3-one (21.04%). Based on a literature study, the presence of phytol, neophytadiene, β-caryophyllene, stigmasterol, γ-sitosterol, and lup-20(29)-en-3-one have contributed to the strong α-glucosidase inhibitory activity of n-Hexane extract of Merremia vitifolia leaves.

Downloads

Download data is not yet available.

Author Biographies

Candra Yulius Tahya, Universitas Pelita Harapan

Chemistry Education Department, Faculty of Education

Karnelasatri Karnelasatri, Universitas Pelita Harapan

D3 Pharmacy Department, Faculty of Health Sciences

References

Akter, S., Jahan, I., Khatun, M. R., Khan, M. F., Arshad, L., Jakaria, M., Haque, M. A. (2021). Pharmacological insights into Merremia vitifolia (Burm.f.) Hallier f. leaf for its antioxidant, thrombolytic, anti-arthritic and anti-nociceptive potential. Biosci Rep, 41 (1): BSR20203022. doi: https://doi.org/10.1042/BSR20203022

Bento, A. F., Claudino, R. F., Dutra, R. C., Marcon, R., & Calixto, J. B. (2011). Omega-3 fatty acid-derived mediators 17(R)-hydroxy docosahexaenoic acid, aspirin-triggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. Journal of Immunology (Baltimore, Md. : 1950), 187(4), 1957–1969. https://doi.org/10.4049/jimmunol.1101305

Chowdhury, R. R., & Ghosh, S. K. (2012). Phytolderived novel isoprenoid immunostimulants. Frontiers in Immunology, 3(MAR), 1–11. https://doi.org/10.3389/fimmu.2012.00049

Ganjir, M., Behera, D. R., & Bhatnagar, S. (2013). Phytochemical Analysis, Cytotoxic And Antioxidant Potential Of Ipomoea Pes Caprae(L)R.Br And Merremia Umbellata(L.)H. Hallier. Phytochemical Analysis, Cytotoxic And Antioxidant Potential Of Ipomoea Pes Caprae(L)R.Br And Merremia Umbellata(L.)H. Hallier., 2(5), 80–83.

Gawade, B., & Farooqui, M. (2017). Alpha-Amylase Inhibitory Assay of Argemone mexicana L. Leaves. Available Online Www.Jocpr.Com Journal of Chemical and Pharmaceutical Research, 9(12), 25–29. www.jocpr.com

GBIF Secretariat. (2019). M. vitifolia (Burm.fil.) Hall.fil. https://doi.org/https://doi.org/10.15468/39omei

Hasanah, E., Ayu, N. K., & Puspita, D. (2020). Activity Test of Leaf Ethanol Extract Bilajang Bulu Merremia Vitifolia Against Staphylococcus Aureus Bacteria. Al-Kimia, 8(1), 29–35. https://doi.org/10.24252/al-kimiav8i1.6368

Hasanah, E., Ayu, N. K., Puspita, D., & Sukarti, S. (2019). Analysis of Flavaniod Content From Extract Ethanol Bilajang Bulu Leaf (Merremia vitifolia). Jurnal Akta Kimia Indonesia (Indonesia Chimica Acta), 12(1), 73. https://doi.org/10.20956/ica.v12i1.6456

Hu, Y., Zeng, Z., Wang, B., & Guo, S. (2017). Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells. International Immunopharmacology, 51, 91–98. https://doi.org/10.1016/j.intimp.2017.07.009

Indrianingsih, A. W., Tachibana, S., & Itoh, K. (2015). In Vitro Evaluation of Antioxidant and α-Glucosidase Inhibitory Assay of Several Tropical and Subtropical Plants. Procedia Environmental Sciences, 28(SustaiN 2014), 639–648. https://doi.org/10.1016/j.proenv.2015.07.075

Islam, M. T., Ali, E. S., Uddin, S. J., Shaw, S., Islam, M. A., Ahmed, M. I., Chandra Shill, M., Karmakar, U. K., Yarla, N. S., Khan, I. N., Billah, M. M., Pieczynska, M. D., Zengin, G., Malainer, C., Nicoletti, F., Gulei, D., Berindan-Neagoe, I., Apostolov, A., Banach, M., … Atanasov, A. G. (2018). Phytol: A review of biomedical activities. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 121, 82–94. https://doi.org/10.1016/j.fct.2018.08.032

Kumar, S., Kumar, V., & Prakash, O. (2013). Enzymes Inhibition and Antidiabetic Effect of Isolated Constituents from Dillenia indica. BioMed Research International, 2013, 1–7.

Kumar, S., Narwal, S., Kumar, V., & Prakash, O. (2011). α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews, 5(9), 19–29. https://doi.org/10.4103/0973-7847.79096

Kumawat, V. S., & Kaur, G. (2019). Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. European Journal of Pharmacology, 862, 172628. https://doi.org/https://doi.org/10.1016/j.ejphar.2019.172628

Munasaroh, S., Tamat, S. R., & Dewi, R. T. (2018). Isolation and identification of a-glucosidase inhibitor from aspergillus terreus F38. Indonesian Journal of Pharmacy, 29(2), 74–79. https://doi.org/10.14499/indonesianjpharm29iss2pp74

Murugesu, S., Ibrahim, Z., Ahmed, Q., Yusoff, N. N., Uzir, B., Perumal, V., Abas, F., & Saari, K. (2018). Clinacanthus nutans Lindau Leaves by Gas Metabolomics and Molecular Docking Simulation. Molecules, 23(2402), 1–21. https://doi.org/10.3390/molecules23092402

Nokhala, A., Siddiqui, M. J., Ahmed, Q. U., Safwan, M., Bustamam, A., & Zakaria, Z. A. (2020). Investigation of α -Glucosidase Inhibitory Metabolites from Tetracera scandens Leaves by GC – MS Metabolite Profiling and Docking Studies. Biomolecules, 10(287), 1–17.

Oliveira, C. C. de, Oliveira, C. V. de, Grigoletto, J., Ribeiro, L. R., Funck, V. R., Grauncke, A. C. B., Souza, T. L. de, Souto, N. S., Furian, A. F., Menezes, I. R. A., & Oliveira, M. S. (2016). Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy and Behavior, 56, 26–31. https://doi.org/10.1016/j.yebeh.2015.12.040

Oso, B. J., & Olaoye, I. F. (2020). Comparative in vitro studies of antiglycemic potentials and molecular docking of Ageratum conyzoides L. and Phyllanthus amarus L. methanolic extracts. SN Applied Sciences, 2(4), 1–13. https://doi.org/10.1007/s42452-020-2275-5

Passos, J. L., Almeida Barbosa, L. C., Demuner, A. J., Alvarenga, E. S., Da Silva, C. M., & Barreto, R. W. (2012). Chemical characterization of volatile compounds of lantana camara l. and l. radula sw. and their antifungal activity. Molecules, 17(10), 11447–11455. https://doi.org/10.3390/molecules171011447

Pejin, B., Kojić, V., & Bogdanovic, G. (2014). An insight into the cytotoxic activity of phytol at in vitro conditions. Natural Product Research, 28, 1–4. https://doi.org/10.1080/14786419.2014.921686

Phatangare, N. D., Deshmukh, K. K., Murade, V. D., Naikwadi, P. H., Hase, D. P., Chavhan, M. J., & Velis, H. E. (2017). Isolation and Characterization of β-Sitosterol from Justicia gendarussa burm. F.-An Anti-Inflammatory Compound. International Journal of Pharmacognosy and Phytochemical Research, 9(09), 864–872. https://doi.org/10.25258/phyto.v9i09.10317

Polanco-Hernández, G., Escalante-Erosa, F., García-Sosa, K., Chan-Bacab, M. J., Sagua-Franco, H., González, J., Osorio-Rodríguez, L., & Peña-Rodríguez, L. M. (2012). Metabolites from the leaf extract of Serjania yucatanensis with trypanocidal activity against Trypanosoma cruzi. Parasitology Research, 111(1), 451–455. https://doi.org/10.1007/s00436-012-2861-6

Proença, C., Freitas, M., Ribeiro, D., Oliveira, E. F. T., Sousa, J. L. C., Tomé, S. M., Ramos, M. J., Silva, A. M. S., Fernandes, P. A., & Fernandes, E. (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1216–1228. https://doi.org/10.1080/14756366.2017.1368503

Santos, C. C. de M. P., Salvadori, M. S., Mota, V. G., Costa, L. M., de Almeida, A. A. C., de Oliveira, G. A. L., Costa, J. P., de Sousa, D. P., de Freitas, R. M., & de Almeida, R. N. (2013). Antinociceptive and Antioxidant Activities of Phytol In Vivo and In Vitro Models. Neuroscience Journal, 2013, 949452. https://doi.org/10.1155/2013/949452

Schmidt, T. J., Kaiser, M., & Brun, R. (2011). Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata, and evaluation of its antiprotozoal activity. In Planta medica (Vol. 77, Issue 8, pp. 849–850). https://doi.org/10.1055/s-0030-1250612

Shan, J., Chen, L., & Lu, K. (2017). Protective effects of trans-caryophyllene on maintaining osteoblast function. IUBMB Life, 69(1), 22–29. https://doi.org/10.1002/iub.1584

Sirikhansaeng, P., Tanee, T., Sudmoon, R., & Chaveerach, A. (2017). Major Phytochemical as γ-Sitosterol Disclosing and Toxicity Testing in Lagerstroemia Species. Evidence-Based Complementary and Alternative Medicine, 2017, 7209851. https://doi.org/10.1155/2017/7209851

Tabana, Y., Dahham, S., Tabana, Y., Iqbal, M. A., Ahamed, M. B. K., Ezzat, M. O., Abdul Majid, A. S., & Abdul Majid, A. M. S. (2015). The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. https://doi.org/10.13140/RG.2.1.3843.9523

Tahya, C. Y., Tiwery, E., Monaten, M. G., & Lumbantoruan, T. K. J. (2020). Identifikasi Fitosterol dengan Kromatografi Gas – Spektrometer Massa pada Ekstrak Kloroform Biji Buah Atung ( Parinarium Glaberimum Hassk). 4(1), 14–20. https://doi.org/10.17977/um0260v4i12020p014

Tsai, F. S., Lin, L. W., & Wu, C. R. (2016). Lupeol and its role in chronic diseases. In Advances in Experimental Medicine and Biology (Vol. 929, pp. 145–175). Springer New York LLC. https://doi.org/10.1007/978-3-319-41342-6_7

Tualeka, A., Mapanawang, A. L., Petrus, H. C., & Gambe, A. (2018). Idetification of Phytol Compounds Contained in The Methanol Extract of Dragon Tail Leaves. International Journal of Health Medicine and Current Research, 3(03), 999–1003. https://doi.org/10.22301/IJHMCR.2528-3189.999

Yin, Z., Zhang, W., Feng, F., Zhang, Y., & Kang, W. (2014). α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 3(3), 136–174. https://doi.org/https://doi.org/10.1016/j.fshw.2014.11.003

Zahratunnisa, N., Elya, B., & Noviani, A. (2017). Inhibition of Alpha-Glucosidase and antioxidant test of stem bark extracts of garcinia fruticosa lauterb. Pharmacognosy Journal, 9(2), 273–275. https://doi.org/10.5530/pj.2017.2.46

Downloads

Published

2021-12-15