Zno/Ag Thin Layer Microstructure with The Effect of Annealing Temperature

Sheilla Rully Anggita*  -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Habik Setiawan  -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Heri Sutanto  -  Universitas Diponegoro, Indonesia

(*) Corresponding Author

The formation of ZnO/Ag morphology in the form of ganglia structures that are overgrown with grains in previous studies has been shown to degrade the presence of E. coli bacteria. In this research, the variations of annealing temperature were studied, namely 250 ℃, 300 ℃, 350 ℃, and 400 ep when the 4% ZnO/Ag deposition had an effect on crystallinity and morphology. The crystallinity of ZnO/Ag was obtained by using the X-Ray Diffraction (XRD) test and the surface morphology of the ZnO/Ag layer using the Scanning Electron Microscope (SEM) test. The results of the research with the XRD test showed that the crystal structure of ZnO/Ag 4% was hexagonal wurtzite at annealing temperature of 250 ℃ and 300 ℃, while the amorphous structure was obtained in ZnO/Ag with annealing temperature of 350 ℃ and 400 ℃. The largest average crystallite size was owned by ZnO/Ag at annealing temperature of 300 ℃ which was 83.408 µm. The morphology obtained from a thin layer of ZnO/Ag 4% with annealing temperature of 250 ℃ and 300 ℃ is in the form of grains composed of ganglia structures. The ZnO/Ag layer with annealing temperature of 300 ℃ had the largest roughness level of 0.422 µm and the largest surface area of 197.233 µm. Meanwhile, the morphology of ZnO / Ag at annealing temperature of 350 ℃ and 400 ℃ did not form a ganglia structure so that the roughness level was low and the surface area was small. The larger the crystallite size, the higher the roughness level, and the larger the resulting surface area. ©2018 JNSMR UIN Walisongo. All rights reserved.

 

Keywords: ZnO/Ag, annealing, morphology, crystal structure

  1. Agung, Leonardo dan Yoseph H.W., Kali Semarang Tercemar Bakteri E-Colli, http://suaramerdeka.com/v1/index.php/read/news/2010/11/01/69385 accessed 18 June 2013.
  2. Amornpitoksuk, Pongsaton, Sumetha Suwanboon, Suthinee Sangkanu, Ampaitip Sukhoom, Nantakan Muensit, Jonas Baltrusaitis, Synthesis, Characterization, Photocatalytic, and Antibacterial Activities of Ag-doped ZnO Powder Modified with a Diblock Copolymer, Journal of Powder Technology, (2012), 219, 158-164.
  3. Anggita, S.R., Sutanto, H. Deposisi Lapisan Tipis ZnO:Ag dan Aplikasinya untuk Degradasi Polutan Organik, Berkala Fisika (2014), Vol. 17, No. 3.
  4. Anggita, S.R., Sutanto, H. Pengaruh Dopan Ag pada ZnO Terhadap Kekasaran Permukaan dan Aktivitas Fotokatalitiknya, papers Seminar Nasional Quantum #25 (2018) 2477-1511 (788).
  5. Anggita, S.R., Sutanto, H. Preparation and Microstructure of Ag Doped on ZnO, J. Nat. Science & Math Res. Vol. 2 No. 2 (2016), 148-152. 148.
  6. Baruah, S., Samir K.P., Joydeep D., Nanostructured Zinc Oxide for Water Treatment, Nanoscience & Nanotechnology-Asia, (2012), Vol. 2, No. 2.
  7. Chang, J. C, Hsu, M.H., Weng, Y.C., Tsay, C.Y, Lin, C.K., 2013, Hierarchical ZnO Nanorod-Array Films with Enhanced Photocatalytic Performance, Journal of Thin Solid Films, 528, 167–174.
  8. Chauhan, Ruby, Ashavani Kumar, Ram Pal Chaudary, Synthesis and Characterisation of Silver Doped ZnO Nanoparticles, journal of Sholar Research Library, (2010), 2, 378-385.
  9. Dengyuan, H., Xiaoping. Z., Effect of Ar Pressure on Properties of ZnO∶Al Films Prepared by RF Magnetron Sputtering, (2005).
  10. Duan,L., Lin, B., Zhang, W., Zhong.S., Fu, Z., Enhancement of ultraviolet emissions from ZnO films by Ag doping, 88 (2006) 232110.
  11. Fujishima A., Rao TN, Tryk DA, Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, (2000), 1, 1-21.
  12. Haque, M.M, Detlef B., Mohammad M., Tomasz P. (Ed.) Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics, Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical, InTech, from: http://www.intechopen.com/books/organic-pollutants-ten-years-after-the-stockholm-conventionenvironmental-and-analytical-update/photocatalytic-degradation-of-organic-pollutants-mechanisms-andkinetics, (2012), ISBN: 978-953-307-917-2.
  13. Kaneva, N., Bojinova, A., Papazova, K., dan Dimitrov, D., Effect of Substrate on Photocatalytic Efficiency of ZnO Film for Malachite Green Degradation, Journal of Chemical Technology and Metallurgy, (2014), 49, 2, 149-156.
  14. Kim, Jun Sung, Eunye Kuk, Kyeong Nam Yu, Jong-Ho Kim, Sung Jin Park, Hu Jang Lee, So Hyun Kim, Young Kyung Park, Yong Ho Park, Cheol-Yong Hwang, Yong-Kwon Kim, Yoon-Sik Lee, Dae Hong Jeong, Myung Haing Cho, Antimicrobial Effect of Silver nanoparticles, Journal of Nanomedicine (2007), 3, 95-101.
  15. Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., dan Lee, D.S., Antibacterial Activity of Silver-Nanoparticles Against Staphylococcus aureus and Escherichia coli, Korean J. Microbiol. Biotechnol, (2011), Vol. 39, No. 1, 77–85.
  16. Kumar, V., Halehatty Bhojya Naik, D Girija, B Vijaya Kumar, ZnO nanoparticles as Catalyst for Efficient Green One-Post Synthesis of Coumarins Through Knoevenagel Condensation, Journal of Chemical Science (2011), 123, 615-621.
  17. Meng, Z., Juan,Z., Wastewater treatment by photocatalytic oxidation of Nano-ZnO. 12 (2008) 1-9.
  18. Morkoc H.¸ dan Özgür, Ü, Zinc Oxide Fundamentals, Materials and Device Technology, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA : 2009.
  19. Pusvitasari, M., Sutanto, H., Deposisi Lapisan Tipis Zinc Oxide (ZnO) di atas Substrat Kaca dengan Metode Sol-Gel untuk Aplikasi Degradasi Warna, Youngster Physics Journal, (2012), Vol. 1, No. 1
  20. Saravanan, R., Karthikeyan N., Gupta V.K , Thirumal E., Thangadurai P., Narayanan V., A. Stephen. ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Materials Science and Engineering (2013) MSC-03838.
  21. Shah, A.H, Manikandar, A.B.M., Ganesan, V., Enhanced Bioactivity of Ag/ZnO Nanorods-A Comparative Antibacterial Study. J. Nanomed Nanotechol (2013), 4:3.
  22. Sulzer, 2013, An Introduction to Thermal Spray, Metco, Issue 4.
  23. Tsay, C.Y., dan Lee, W.C., 2013, Effect of Dopants on The Structural, Optical and Electrical Properties of Sol-Gel Derived ZnO Semiconductor Thin Films, Journal of Current Applied Physics, 13, 60-65.
  24. Tucker, R. C. Jr., 1994, Thermal Spray Coatings, ASM Handbook, Volume 5: Surface Engineering, 497-509.
  25. Wang, Chao Lian-Long Liu, Ai-Ting Zhang, Peng Xie, Jian-Jun Lu and Xiao-Ting Zou, Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K88, African Journal of Biotechnology, (2012) Vol. 11(44), pp. 10248-10254, ISSN 1684–5315
  26. Wang, Z.L., 2004, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter 16, R829–R858.
  27. You, J.B., Zhang, X.W., Fan, Y.M., Yin, Z.G., Cai, P.F., dan Chen, N.F., Effect of the Morfologi of ZnO/Ag Interface on the Surface-Plasmon-Enhanced Emission of ZnO Films, (2008), J. Phys. D: Appl. Phys., 41, 205101.
  28. Zhi-gang, Jia, PENG Kuan-kuan, LI Yan-hua, ZHU Rong-sun, (2012), Preparation and photocatalytic performance of Porous ZnO microrods loaded with Ag, Journal of Trans. Nonferrous Met. Soc. 22, 873-878.

Open Access Copyright (c) 2018 Journal of Natural Sciences and Mathematics Research
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Natural Sciences and Mathematics Research
Published by Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/JNSMR
Email:jnsmr@walisongo.ac.id

ISSN: 2614-6487 (Print)
ISSN: 2460-4453 (Online)

View My Stats

Lisensi Creative Commons

This work is licensed under a Creative Commons Lisensi Creative Commons .

apps