Identification of the Subsurface Structure of Geothermal Working Area of the Hamiding Mountain, North Maluku through Land Surface Temperature (LST) Data and Forward Modeling with the Gravity Method

Authors

  • Muhammad Nafian Program Study of Physics, Faculty of Science and Technology, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jalan. Ir. H. Djuanda No.95, Cempaka Putih, Ciputat, Kota Tangerang Selatan, Banten 15412, Indonesia
  • Belista Gunawan Program Study of Physics, Faculty of Science and Technology, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jalan. Ir. H. Djuanda No.95, Cempaka Putih, Ciputat, Kota Tangerang Selatan, Banten 15412, Indonesia
  • Nanda Ridki Permana PT. Minelog Service Indonesia, BSD, Bumi Serpong Damai, Kawasan Industri & Gudang Taman Tekno Blok G1 No. 10, Jl. Sektor 11, Setu, Kec. Setu, Kota Tangerang Selatan, Banten 15220, Indonesia
  • Rofiqul Umam Department of Applied Chemistry for Environment, Kwansei Gakuin University, 669-1330 Gakuen Uegahara 1 Chome Sanda Shi, Hyogo Prefecture, Japan https://orcid.org/0000-0002-7095-5967

DOI:

https://doi.org/10.21580/jnsmr.2022.8.1.11902

Keywords:

Derivative Analysis, forward modelling, LST, gravity method, Geothermal

Abstract

The Mount Hamiding area has one of the largest geothermal potentials in Indonesia to be exploited. Therefore, this research was conducted with the aim of knowing the subsurface structure in the area using the gravity method. To correlate gravity data in order to obtain parameters to measure the increase in surface temperature using supporting data is land surface temperature. Derivative analysis and 2D modeling carried out by forward modeling is one method that can strengthen the geothermal potential in the area. Based on the Land Surface Temperature map, the temperature around the geothermal prospect area is 22 – 25 0C. The results of the derivative analysis show that the geothermal prospect of Mount Hamiding is controlled by two different faults, a fault due to the depression of the old Hamiding caldera and a local fault under the surface of Mount Dukono, which is confirmed as a reverse fault. While the 2D modeling identified the geothermal reservoir layer, which is estimated to have a density of 1.59 gr/cc and consists of a mixture of tuff and minor lava, where the contents of this reservoir are water dominant due to the relatively low-density value with a depth of -411 – (-1280) m, above the reservoir layer it is suspected that the tuff and clay insert layer has a density of 2.56 gr/cc with a depth of 310 – (-1280) m, and the covering layer which is presumed to be a clay cap layer has a density of 1.39 gr/cc with a depth of 870 – (-620). ©2022 JNSMR UIN Walisongo. All rights reserved.

Downloads

Download data is not yet available.

Author Biography

Nanda Ridki Permana, PT. Minelog Service Indonesia, BSD, Bumi Serpong Damai, Kawasan Industri & Gudang Taman Tekno Blok G1 No. 10, Jl. Sektor 11, Setu, Kec. Setu, Kota Tangerang Selatan, Banten 15220

PT. Minelog Service Indonesia, BSD, Bumi Serpong Damai, Kawasan Industri & Gudang Taman Tekno Blok G1 No. 10, Jl. Sektor 11, Setu, Kec. Setu, Kota Tangerang Selatan, Banten 15220

References

Regina, dkk. 2017. “Panas Bumi Sebagai Harta Karun Untuk Menuju Ketahanan Energi”. Jurnal Ketahanan Nasional, Vol.23, No.2, Hal 217-237.

Dian dan Rustadi. 2019. “Interpretasi Sistem Panas Bumi Suwawa Berdasarkan Data Gaya Berat”. Jurnal Geofisika Eksplorasi, Vol. 5, No. 2, Hal. 44-54.

Y. Daud et al., “Resistivity characterization of the Arjuno-Welirang volcanic geothermal system (Indonesia) through 3-D Magnetotelluric inverse modeling,” Journal of Asian Earth Sciences, vol. 174, pp. 352–363, May 2019, doi: 10.1016/j.jseaes.2019.01.033.

M. Alonso et al., “Thermal energy and diffuse 4He and 3He degassing released in volcanic-geothermal systems,” Renewable Energy, vol. 182, pp. 17–31, Jan. 2022, doi: 10.1016/j.renene.2021.10.016.

Kasbani. “Tipe Sistem Panas Bumi Di Indonesia Dan Estimasi Potensi Energinya”. Kelompok Program Penelian Panas Bumi, PMG –Badan Geologi.

Direktorat Jenderal EBTKE. 2017. Potensi Panas Bumi Indonesia Jilid 1. Jakarta: Direktorat KESDM.

Carlile J. C., Davey G. R., Kadir I., Langmead R. P., Rafferty W. J. 1998. “Discovery and exploration of the Gosowong epithermal golddeposit, Halmahera, Indonesia”, Journal of Geochemical Exploration. vol. 60, No 3, pp. 207 – 227, doi: 10.1016/S0375-6742(97)00048-4

Telford, Geldert, Sheriff. 1990. “Apllied Geophysics Second Edition”. Cambride University Press : New York.

D. Kucharski et al., “Full attitude state reconstruction of tumbling space debris TOPEX/Poseidon via light-curve inversion with Quanta Photogrammetry,” Acta Astronautica, vol. 187, pp. 115–122, Oct. 2021, doi: 10.1016/j.actaastro.2021.06.032.

P. Kunnummal and S. P. Anand, “Qualitative appraisal of high resolution satellite derived free air gravity anomalies over the Maldive Ridge and adjoining ocean basins, western Indian Ocean,” Journal of Asian Earth Sciences, vol. 169, pp. 199–209, Jan. 2019, doi: 10.1016/j.jseaes.2018.08.008.

H. Ryka and R. S. Afifah. 2019. “Pemodelan Geologi Bawah Permukaan Bantar Karet, Jawa Barat Menggunakan Metode,” vol. 3, no. 2, pp. 59–65, 2019, doi: 10.20956/geocelebes.v3i2.6689.

Aji D. M. 2019. “Analisa Matematis pada Koreksi Bouguer dan Koreksi Medan Data Gravitasi Satelit Topex dalam Penentuan Kondisi Geologi Studi Kasus Sesar Palu Koro, Sulawesi Tengah”. Jurnal Geosaintek, Vol. 5, No. 3, pp. 91-100.

Yulistina, S. 2017. “Studi Identifikasi Struktur Geologi Bawah Permukaan Untuk Mengetahui Sistem Sesar Berdasarkan Analisis First Horizontal Derivative (Fhd), Second Vertical Derivative (Svd), Dan 2,5d Forward Modeling Di Daerah Manokwari Papua Barat”. Universitas Lampung.

Yasrifa, dkk. 2019. “Pendugaan Patahan Daerah “Y” berdasarkan Anomali Gayaberat dengan Analisis Derivative”. Jurnal Geofisika Eksplorasi, Vol. 5, No. 1, Hal, 75-88.

Triani T., Umam R., Sismanto S. 2021. “3D Modeling of Subsurface Lawanopo Fault In Southeast Sulawesi, Indonesia Using Grablox and its Consequence to Geohazard”. The Indonesian journal of geography. Vol. 53. No. 1. pp. 67-77. doi: 10.22146/ijg.50878

Brandon, dkk. 2021. “Pengolahan Data Landsat Dan Gravitasi Sebagai Indikasi Panasbumi Daerah Rana Kulan, Ntt”. JGE (Jurnal Geofisika Eksplorasi), Vol. 07 No. 1, Hal. 41-51.

Passarelli L, Heryandoko N, Cesca S,Rivalta E, Rasmid, Rohadi S, Dahm Tand Milkereit C. 2018. “Magmatic or Not Magmatic? The 2015–2016 Seismic Swarm at the Long-Dormant Jailolo Volcano, West Halmahera,Indonesia”. Front. Earth Sci. Vol 6, No. 79. pp 1-17. doi: 10.3389/feart.2018.00079

Prastowo R., Helmi H., Trianda O., Umam R. 2021. "Identification of Slip Surfaces Using the Geoelectric Imaging Method in the Kalirejo Area, Kokap District, Yogyakarta, Indonesia". JIPF (Jurnal Ilmu Pendidikan Fisika). Vol. 6. No. 3. pp. 2477-8451. doi: 10.26737/jipf.v6i3.2072

Prastowo R., Helmi H., Trianda O., Umam R. 2021. "Identification of Andesite Resource Potential In Kalirejo Area, Kokap Sub-District, Kulon Progo Using Resistivity Method". Forum Geografi Vol. 35. No. 1. pp: 74-84. doi: 10.23917/forgeo.v35i1.13507

Anwar H., Ipmawan V. L., Sriyakul T. 2022. "Geophysical Analysis Using Proton Precession Magnetometer GSM-19T as Information on Fault Presence in Medana, North Lombok, Indonesia". International Journal of Hydrological and Environmental for Sustainability (IJHES). Vol. 1. No. 1. pp. 8-23.

Downloads

Published

2022-06-27

Issue

Section

Original Research Articles