Risk analysis of air quality for parameters NO2, SO2, NH3, and Ox from the area around fertilizer industries in Indonesia

Authors

  • Dante Alighiri Universitas Negeri Semarang, Indonesia https://orcid.org/0000-0002-6626-7571
  • Naufaldi Bani Widodo Universitas Negeri Semarang, Indonesia
  • Ravely Adhitya Abdullah Universitas Negeri Semarang, Indonesia
  • Indah Putri Firnanda Universitas Negeri Semarang, Indonesia
  • Apriliana Drastisianti Universitas Islam Negeri Walisongo Semarang, Indonesia https://orcid.org/0000-0002-5417-0297

DOI:

https://doi.org/10.21580/jnsmr.v11i1.23331

Keywords:

Air pollution, fertilizer industry, NO2, SO2, NH3, Ox, environmental monitoring

Abstract

Industrial zones with intensive human activities often experience air-quality degradation, particularly in areas surrounding fertilizer production facilities. This study analyzes the concentrations of nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ammonia (NH₃), and oxidants (Ox) in the ambient air around fertilizer industries in Indonesia and evaluates their potential non-carcinogenic health risks. Air sampling was conducted using an InScienPro US-1012 impinger equipped with selective absorbent solutions. Pollutant concentrations were quantified using UV-Vis spectrophotometry based on the Griess–Saltzman method for NO₂, the pararosaniline method for SO₂, the indophenol method for NH₃, and the neutral buffer potassium iodide method for Ox. Concentrations were compared with national ambient air-quality standards. To strengthen the assessment, a quantitative health-risk evaluation was incorporated using the Hazard Quotient (HQ) and Hazard Index (HI), allowing for the interpretation of long-term exposure impacts. Results show that most pollutant concentrations were below regulatory limits; however, SO₂ levels at one sampling point and NH₃ levels near the production zone were elevated. The HQ–HI analysis revealed that SO₂ at the office-area sampling point (HQ = 0.794) and NH₃ inside the processing plant (HQ = 2.238) were the dominant contributors to cumulative exposure, with HI values exceeding 1 at both locations. These findings indicate potential non-carcinogenic risks for individuals chronically exposed in areas closest to emission sources. Overall, this study highlights the importance of continuous monitoring and risk-based evaluation to identify localised hotspots, inform mitigation strategies, and enhance emission control practices in fertiliser-industrial environments.

Downloads

Download data is not yet available.

Author Biographies

Dante Alighiri, Universitas Negeri Semarang

Chemistry Department

Naufaldi Bani Widodo, Universitas Negeri Semarang

Chemistry Department

Ravely Adhitya Abdullah, Universitas Negeri Semarang

Chemistry Department

Indah Putri Firnanda, Universitas Negeri Semarang

Chemistry Department

Apriliana Drastisianti, Universitas Islam Negeri Walisongo Semarang

Department of Chemistry Education

References

Alighiri, D., Wardani, S., & Harjito. (2015). Sintesis selulosa asetat dari jerami padi sebagai upaya penanggulangan limbah pertanian. In Proceeding Seminar Nasional Kimia dan Pendidikan Kimia SNKPK (p. 28).

Arshad, M., & Shanavas, P. (2013). Comparison of serum and urinary fluoride levels among fertilizer and wood industry workers in Mangalore city, India. Fluoride, 46(2), 80-82.

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., & Stevens, B. (2020). Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics, 58(1).

Bocato, M. Z., Sanches, D., Vaz, B. G., Pereira, M., Tavares, D. S., & Gobo, G. (2019). An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. Journal of Toxicology and Environmental Health, Part A, 82(5-6), 131-156.

Bowden, D. J., & Brimblecombe, P. (2003). The rate of metal catalyzed oxidation of sulfur dioxide in collagen surrogates. Journal of Cultural Heritage, 4(2), 137-147.

Chheang, L., Heng, S., Neth, P., Sin, S., Kimhong, S., & Lay, K. S. (2021). Heavy metal contamination and human health implications in the Chhne Tnal reservoir, Cambodia. Sustainability, 13(24), 13538.

Chu, B., Ma, Q., Liu, J., Ma, J., Zhang, P., Chen, T., Feng, Q., Wang, C., Yang, N., Ma, H., Russell, A. G., & He, H. (2020). Air pollutant correlations in China: Secondary air pollutant responses to NOx and SO2 control. Environmental Science & Technology Letters, 7(10), 695-700. https://doi.org/10.1021/acs.estlett.0c00403

Coelho, L. H. G., Melchert, W. R., Rocha, F. R., Rocha, F. R. P., & Gutz, I. G. R. (2010). Versatile microanalytical system with porous polypropylene capillary membrane for calibration gas generation and trace gaseous pollutants sampling applied to the analysis of formaldehyde, formic acid, acetic acid and ammonia in outdoor air. Talanta, 83(1), 84-92. https://doi.org/10.1016/j.talanta.2010.08.045

Fowler, B. A., Yamauchi, H., Conner, E. A., & Akkerman, M. (1993). Cancer risks for humans from exposure to the semiconductor metals. Scandinavian Journal of Work, Environment & Health, 1, 101-103.

Ghavam, S., Vahdati, M., Wilson, I. A. G., & Styring, P. (2021). Sustainable ammonia production processes. Frontiers in Energy Research, 9, 580808. https://doi.org/10.3389/fenrg.2021.580808

Gong, C., Xin, J., Wang, S., Wang, Y., & Zhang, T. (2017). Anthropogenic aerosol optical and radiative properties in the typical urban/suburban regions in China. Atmospheric Research, 197, 177-187.

Hong, Z., Wang, Z., & Li, X. (2017). Catalytic oxidation of nitric oxide (NO) over different catalysts: An overview. Catalysis Science & Technology, 7(16), 3440-3452.

Ji, X., Han, M., Yun, Y., Li, G., & Sang, N. (2015). Acute nitrogen dioxide (NO2) exposure enhances airway inflammation via modulating Th1/Th2 differentiation and activating JAK-STAT pathway. Chemosphere, 120, 722-728.

Kalbarczyk, R., Ziemiańska, M., Nierbca, A., & Dobrzańska, J. (2018). The impact of climate change and strong anthropopressure on the annual growth of Scots pine (Pinus sylvestris L.) wood growing in eastern Poland. Forests, 9(11), 661. https://doi.org/10.3390/f9110661

Kelly, F. J., & Fussell, J. C. (2015). Air pollution and public health: Emerging hazards and improved understanding of risk. Environmental Geochemistry and Health, 37(4), 631-649.

Kuzmanović, P., Knežević, D., Milenković, B., Vukanac, I., Marković, T., & Rajšić, S. (2022). Radioactivity of fertilizers used in Serbia and dose assessments for workers in the industry. Journal of Radioanalytical and Nuclear Chemistry, 1-10.

Larsen, R. (2000). Experiments and observations in the study of environmental impact on historical vegetable tanned leathers. Thermochimica Acta, 365(1), 85-99.

Lee, E. K., Romeiko, X. X., Zhang, W., Feingold, B. J., Khwaja, H. A., Zhang, X., & Lin, S. (2021). Residential proximity to biorefinery sources of air pollution and respiratory diseases in New York State. Environmental Science & Technology, 55(14), 10035-10045. https://doi.org/10.1021/acs.est.1c00698

Liu, C., Chen, R., Lei, J., Zhu, Y., Zhou, L., Meng, X., Xuan, J., & Kan, H. (2023). Ambient nitrogen dioxide and hospitalizations of full-spectrum respiratory diseases: A national case-crossover study. Environmental Health, 1(2), 130-138. https://doi.org/10.1021/envhealth.3c00039

Liu, S., Xing, J., Zhao, B., Wang, J., Wang, S., Zhang, X., & Ding, A. (2019). Understanding of aerosol–climate interactions in China: Aerosol impacts on solar radiation, temperature, cloud, and precipitation and its changes under future climate and emission scenarios. Current Pollution Reports, 5(1), 36-51.

Luo, K., Li, R., Li, W., Wang, Z., Ma, X., Zhang, R., Fang, X., Wu, Z., Cao, Y., & Xu, Q. (2016). Acute effects of nitrogen dioxide on cardiovascular mortality in Beijing: An exploration of spatial heterogeneity and the district-specific predictors. Scientific Reports. https://doi.org/10.1038/srep38328

Nordahl, S. L., Preble, C. V., Kirchstetter, T. W., & Scown, C. D. (2023). Greenhouse gas and air pollutant emissions from composting. Environmental Science & Technology, 57(6), 2235-2247. https://doi.org/10.1021/acs.est.2c05846

Priatmoko, S., Alighiri, D., Drastisianti, A., Harjunowibowo, D., Nur Rohman, A., & Sulistyaningsih, T. (2024). Coagulant preparation from glutaraldehyde-crosslinked durian skin cellulose for treatment of wastewater generated by sugar palm starch industries. Cellulose Chemistry and Technology, 58(1-2), 201-214.

Salmon, L. G., Cass, G. R., Bruckman, K., & Haber, J. (2000). Ozone exposure inside museums in the historic central district of Krakow, Poland. Atmospheric Environment, 34(23), 3823-3832.

Sarudji, D. (2010). Environmental health. Karya Putra Darwati.

Shah, A. S. V., Lee, K. K., McAllister, D. A., Hunter, A., Nair, H., Whiteley, W., Langrish, J. P., Mills, N. L., & Newby, D. E. (2015). Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ, 350, h1295.

SNI. (2017). Ambient air - Part 2: Determination of nitrogen dioxide (NO2) content by Griess-Saltzman method using spectrophotometer (SNI 7119-2:2017). Jakarta: Badan Standardisasi Nasional.

SNI. (2017). Ambient air - Part 7: Determination of sulfur dioxide (SO2) content by pararosaniline method using spectrophotometer (SNI 7119-7:2017). Jakarta: Badan Standardisasi Nasional.

SNI. (2017). Ambient air - Part 1: Determination of ammonia (NH3) content using an indophenol spectrophotometer (SNI 19-7119.1-2017). Jakarta: Badan Standardisasi Nasional.

SNI. (2017). Ambient air - Part 8: Determination of oxidants by neutral buffer potassium iodide (NBKI) method using spectrophotometer (SNI 7119-8:2017). Jakarta: Badan Standardisasi Nasional.

Tang, R., Zhao, J., Liu, Y., Huang, X., Zhang, Y., Zhou, D., Ding, A., Nielsen, C. P., & Wang, H. (2022). Air quality and health co-benefits of China's carbon dioxide emissions peaking before 2030. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28672-3

Vallero, D. (2008). Fundamentals of air pollution (4th ed.). Academic Press.

Walford, H. H., & Doherty, T. A. (2013). STAT6 and lung inflammation. Jak-Stat, 2.

WHO. (2018). Ambient (outdoor) air pollution and health. Retrieved from https://www.who.int/en/newsroom/factsheets/detail/ambient-(outdoor)-airquality-and-health

Zakaria, N., & Azizah, R. (2013). Analysis of air pollution (SO2), complaints of throat irritation and eye irritation health complaints on 64 food traders around Joyoboyo Terminal, Surabaya. Jurnal K3, 2(1).

Zhang, J. Y., Dai, H. X., Wu, Q. J., Li, J., Huang, Y. H., Chen, Z. J., Li, L. L., Chen, Y. L., Liu, S., & Jiang, C. Z. (2021). Maternal exposure to ambient levels of sulfur dioxide and risk of neural tube defects in 14 cities in Liaoning province, China: A population-based case-control study. Journal of Exposure Science and Environmental Epidemiology, 31(2), 266-275. https://doi.org/10.1038/s41370-020-00273-6

Downloads

Published

2025-06-02

How to Cite

Alighiri, D., Widodo, N. B., Abdullah, R. A., Firnanda, I. P., & Drastisianti, A. (2025). Risk analysis of air quality for parameters NO2, SO2, NH3, and Ox from the area around fertilizer industries in Indonesia . Journal of Natural Sciences and Mathematics Research, 11(1), 29–46. https://doi.org/10.21580/jnsmr.v11i1.23331

Issue

Section

Original Research Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.