Application of C-PBL (Context and Problem Based Learning) on Temperature and Heat Materials to Transform Students' Mental Models

Main Article Content

Mutiara Aulia Sabarrini
Taufik Ramlan Ramalis
Ika Mustika Sari

Abstract

This research aims to determine students' conceptual understanding through the C-PBL (Context- and Problem-Based Learning) learning model. The method used was quasi-experimental with a posttest-only control group design. The population in this study were all class XI students in one of the high schools in Bandung. The sampling technique uses cluster random sampling. The samples used were class XI MIPA 1 as the control class and class XI MIPA 3 as the experimental class. Both classes were given a final test (posttest) after applying the C-PBL model in the experimental class and the discovery learning model in the control class. The research results showed that there were differences in students' conceptual understanding in the experimental class and the control class. Analysis of research results using hypothesis testing of the difference between the experimental and control classes averages using the t-test. The t-test was conducted using Microsoft Excel, and the sig results were obtained. (2– tailed) of 0.00. These results show that the C-PBL model significantly influences the mental physics model.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Baran, M., & Sozbilir, M. (2018). An Application of Context- and Problem-Based Learning (C-PBL) into Teaching Thermodynamics. Research in Science Education, 48(4), 663–689. https://doi.org/10.1007/s11165-016-9583-1

Batlolona, J. R., Singerin, S., & Diantoro, M. (2020). Influence of Problem-Based Learning Model on Student Mental Models. Jurnal Pendidikan Fisika Indonesia, 16(1), 14–23. https://doi.org/10.15294/jpfi.v16i1.14253

Chin, C., & Chia, L. G. (2006). Problem-based learning: Using ill-structured problems in biology project work. Science Education, 90(1), 44–67. https://doi.org/10.1002/sce.20097

Dahar, R. W. (1996). Teori-Teori Belajar. Erlangga.

Georgiou, H., & Sharma, M. D. (2015). Does active learning in thermodynamics lectures improve students' conceptual understanding and learning experiences? European Journal of Physics, 36(1). https://doi.org/10.1088/0143-0807/36/1/015020

Hermanto, I. M., Nurhayati, Tahir, I., & Yunus, M. (2023). Penerapan Model Guided Context and Problem based Learning untuk Meningkatkan Pemahaman Konsep pada Materi Gelombang Bunyi. JPF (Jurnal Pendidikan Fisika) Universitas Islam Negeri Alauddin Makassar, 11(1), 151–162. https://doi.org/10.24252/jpf.v11i1.36233

Ibrahim. (2005). Pembelajaran Berdasarkan Masalah. University Press.

Ika Mustika sari. (2017). What do they know about Heat and Heat Conduction? A case study to excavate Pre-service Physics Teachers' Mental Model in Heat and Heat Conduction. Journal of Physics: Conf. Series. IOP Publishing.

Kartal, T., Öztürk, N., & Yalvaç, H. G. (2011). Misconceptions of science teacher candidates about heat and temperature. Procedia - Social and Behavioral Sciences, 15, 2758–2763. https://doi.org/10.1016/j.sbspro.2011.04.184

Kibirige, I. (2021). Exploring the Prevalence of Misconceptions Regarding Heat and Temperature among Grade Nine Natural Science Learners. Unnes Science Education Journal, 10(3), 115–123. https://doi.org/10.15294/usej.v10i3.47258

Langbeheim, E., Safran, S. A., Livne, S., & Yerushalmi, E. (2013). Evolution in students' understanding of thermal physics with increasing complexity. Physical Review Special Topics - Physics Education Research, 9(2). https://doi.org/10.1103/PhysRevSTPER.9.020117

Leinonen, R., Asikainen, M. A., & Hirvonen, P. E. (2013). Overcoming students' misconceptions concerning thermal physics with the aid of hints and peer interaction during a lecture course. Physical Review Special Topics - Physics Education Research, 9(2). https://doi.org/10.1103/PhysRevSTPER.9.020112

Ornek, F., Robinson, W. R., & Haugan, M. P. (2008). What makes physics difficult? 1*. In International Journal of Environmental & Science Education (Vol. 3, Issue 1).

Potter, N. M., & Overton, T. L. (2006). Chemistry in sport: Context-based e-learning in chemistry. Chemistry Education Research and Practice, 7(3), 195–202. https://doi.org/10.1039/B6RP90008A

Sari, I. M., Karim, S., Saepuzaman, D., Ramalis, T. R., & Rusdiana, D. (2020). The Development of Model-Based Learning in Introductory Physics: The effectiveness of improving Students Understanding in Heat and Heat Transfer. Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019. https://doi.org/10.4108/eai.12-10-2019.2296491

Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif & RND. ALFABETA.

Summerfield, S. O. (2003). Problem-solving case studies. Analytical Chemistry, 75, 181–182.

Tania, R. (2021). The Application of Physics Learning Media Based on Android with Learning Problem Based Learning (PBL) to Improve Critical Thinking Skills.

Tse, P., Taylor, G., & Tiwari, A. (n.d.). Developing a context-based PBL model. https://www.researchgate.net/publication/266496123