Annual Premium Determination for Joint Life Insurance with De Moivre and Gompertz’s Mortality Laws

Seftina Diyah Miasary*  -  Universitas Islam Negeri Walisongo Semarang, Indonesia

(*) Corresponding Author

This research discusses how to determine the annual premium for joint life status. The death rate (mortality rate) is one of the factors that can be considered when calculating the premium. The quantitative method used in this study was to estimate the parameters of the De Moivre and Gompertz’s Mortality laws using secondary data from the 2011 Indonesian Mortality Table (TMI III) for men and women. This calculation generates a formula for calculating the annual premium for joint life insurance based on De Moivre and Gompertz mortality law. Starting with estimating the parameters of Gompertz's mortality law for the Indonesian Mortality Table in 2011 using the maximum likelihood estimation method, then calculating the combined life probability, death benefit APV, continuous life annuity APV, and annual premium for joint life insurance. The value of the annual premium on joint life insurance with the mortality law of De Moivre and Gompertz for a simulated term life insurance n = 10 years with age x (husband) 28 years and y (wife) 25 years, the death benefit (R) is Rp. 50,000,000; and the interest rate is 3.50 percent with the Indonesian Mortality Table in 2011. According to the calculations, the annual premium value of joint life insurance based on Gompertz's mortality law is greater than De Moivre's mortality law.

Keywords: Join Life Insurance, Mortality Laws, Annual Premium.

  1. Bhuana, Tri Yana, I Nyoman Widana, And L U H Putu I D A Harini. 2015. “Menentukan Premi Tahunan Untuk Tiga Orang Pada Asuransi Jiwa Hidup Gabungan (Joint Life).” E-Jurnal Matematika 4(4): 195–200.
  2. Bowers, N L et al. “Actuarial Mathematics, 1997.” Society of Actuaries.
  3. Dickson, David C M, Mary R Hardy, and Howard R Waters. 2019. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press.
  4. Harisa, Nurma, and Johannes Kho. 2013. “Premi Tahunan Asuransi Jiwa Berjangka Dengan Hukum De Moivre Untuk Status Gabungan.”
  5. Lestari, Dwi Ayu, Neva Satyahadewi, and Hendra Perdana. 2019. “Penentuan Cadangan Premi Asuransi Jiwa Dwiguna Berjangka Dengan Metode Illinois.” Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya 8(3).
  6. Manjaruni, Vivin, and I Gusti Putu Purnaba. 2021. “Menentukan Premi Asuransi Jiwa Joint Life Untuk Tiga Orang Tertanggung.” Statmat: Jurnal Statistika Dan Matematika 3(1): 29–38.
  7. Mitus, Aswin. 2016. “Analisis Perbandingan Survival Function Dengan Hukum De Moivre Dan Hukum Gompertz.”
  8. Putri, Stefi Amalia. 2019. “Penentuan Premi Dari Asuransi Kontingensi (Contingent Insurance).” Jurnal Matematika UNAND 4(2): 81–88.
  9. Rakhman, A, and A R Effendie. 2013. “Matematika Aktuaria.” Universitas Terbuka. Tanggerang Selatan.
  10. SE, Mellisa Fitri Andriyani M. 2017. “Penerimaan Premi Dan Pembayaran Klaim Di PT. Taspen (Persero) Cabang Yogyakarta.”
  11. Sertdemir, Beste Hamiye. 2013. “Multiple Life Insurance.”
  12. Sesilia, Susanti. 2017. “Premi Tahunan Asuransi Jiwa Seumur Hidup Dengan Hukum De Moivre.”

Open Access Copyright (c) 2022 Square : Journal of Mathematics and Mathematics Education
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Square : Journal of Mathematics and Mathematics Education
Published by Mathematic and Mathematic Education Department of Science and Technology Faculty, Universitas Islam Negeri Walisongo Semarang, Indonesia
Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: http://fst.walisongo.ac.id/
Email: square@walisongo.ac.id

ISSN: 2714-609X (Print)
ISSN: 2714-5506 (Online)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

apps