Pemodelan Tingkat Kemiskinan di Papua Barat dengan Pendekatan Binary Logistic Regression

Authors

  • Anissa Nur Aini Universitas Muhammadiyah Semarang
  • Andika Udistiyan Octario Ashar Universitas Muhammadiyah Semarang
  • Talia Indah Lestari Universitas Muhammadiyah Semarang
  • Indah Manfaati Nur Universitas Muhammadiyah Semarang
  • Rochdi Wasono Universitas Muhammadiyah Semarang

DOI:

https://doi.org/10.21580/square.2023.5.2.17169

Abstract

Binary logistic regression model is a regression model used to predict the probability of a specific event occurring or not occurring based on predictor variable. In this model, the response variable is binary, meaning it has only two possible categories: a “failure”category and a “success” category. West Papua is included in the list of  seven provinces that are the main focus of efforts to combat extreme poverty. Therefore, it is necessary to monitor the factors that need to be considered in order to prevent an increase in the poverty rate. To identify the factors influencing the poverty rate in Papua Barat, the research method used is binary logistic regression modeling, which assesses the influence of independent variables on the poverty rate in West Papua. So the results obtained from this study are from three variables, namely the open unemployment rate, average per capita expenditure, and gross regional domestic product have a significant effect on the poverty rate in West Papua with a classification accuracy of 100%.

Downloads

Download data is not yet available.

References

Amset, P. :, Batusangkar, I., Press, I. B., Putu, N., Hendayanti, N., & Nurhidayati, M. (2020). Regresi Logistik Biner dalam Penentuan Ketepatan Klasifikasi Tingkat Kedalaman Kemiskinan Provinsi-Provinsi di Indonesia Article History. In Sainstek : Jurnal Sains dan Teknologi, 12(2).

Armstrong, J. S. (2011). Disciplines Disciplines Business | Social and Behavioral Sciences Comments Comments Armstrong. In Forthcoming in International Journal of Forecasting.

Ayu, D., Dwi, M., Purnami, Y., Komang, I., Sukarsa, G., & Gandhiadi, G. K. (2015). PENERAPAN REGRESI LOGISTIK ORDINAL UNTUK MENGANALISIS TINGKAT KEPARAHAN KORBAN KECELAKAAN LALU LINTAS KABUPATEN BULELENG. 4(2), 54–58.

BPS Papua Barat. (2022). Badan Pusat Statistika Provinsi Papua Barat. https://papuabarat.bps.go.id/

Diyah, S. ’, & Adawiyah, E. (2020). KHIDMAT SOSIAL. In Journal of Social Work and Social Service, 1(1).

Hosmer, D. W., & Lameshow, S. (2000). Applied Logistic Regression (Noel A.C. Cressie, Nicholas I. Fisher, lain M. Johnstone, J.B. Kadane, David W. Scott, Bernard W. Silverman, Andrian F.M. Smith, Jozef L. Teugels, Vic Barnett, Emeritus, Ralph A. Bradley, Emeritus, J.Stuart Hunter, Emeritus, David G.Kendall, & Emeritus, Eds.; Second Edition). https://doi.org/10.1002/0471722146

Matematika Fakultas Sains Dan, J. (2015). PENYELESAIAN MULTIKOLINIERITAS PADA MODEL FUNGSI PRODUKSI CONSTANT ELASTICITY OF SUBSTITUTION.

Santika, M. A., & Karyana, Y. (2022). Analisis Regresi Logistik Biner dengan Efek Interaksi untuk Memodelkan Angka Fertilitas Total di Jawa Barat. Bandung Conference Series: Statistics, 2(2), 142–151. https://doi.org/10.29313/bcss.v2i2.3555

Suharto, E. (2009). Pekerjaan sosial di dunia industri memperkuat CSR (corporate sosial responsibility) (Cet. 2). Alfabeta.

WANTORO, D. D. (2017). PENDUGAAN PARAMETER REGRESI LOGISTIK BINER DENGAN METODE LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) (Studi Pada Persentase Tingkat Kemiskinan Kota/Kabupaten di Jawa Timur Tahun 2014).

Fitri, R. E., Setiawan, E., Usman, M., & Aziz, D. (2022). Analisis Regresi Logistik Biner terhadap Data Indeks Kedalaman Kemiskinan di Indonesia Tahun 2020. Jurnal Siger Matematika, 3(2), 69-74.

Santika, M. A., & Karyana, Y. (2022). Analisis Regresi Logistik Biner dengan Efek Interaksi untuk Memodelkan Angka Fertilitas Total di Jawa Barat. In Bandung Conference Series: Statistics (Vol. 2, No. 2, pp. 142-151).

Downloads

Published

2023-10-30

Issue

Section

Articles