Ideal, Homomorfisma dan Gelanggang Faktor Pada Gelanggang Artin

Didit Satriawan*  -  Universitas Mataram, Indonesia
Muhammad Naoval Husni  -  Universitas Mataram, Indonesia

(*) Corresponding Author

Pada penelitian ini akan ditunjukkan beberapa karakteristik dari gelanggang Artin seperti ideal prima, ideal maksimal, homomorfisma dan gelanggang faktor pada gelanggang artin. Hasil utama yang didapatkan dalam penelitian ini adalah jika R gelanggang Artin maka setiap ideal prima dari R adalah maksimal, kemudian jika R merupakan gelanggang Artin maka S juga merupakan gelanggang Artin, dan yang terakhir jika I dan R/I merupakan gelanggang Artin maka R merupakan gelanggang Artin

  1. Alfian, M. R., Maulana, F., Switrayni, N. W., Aini, Q., Putri, D. N., & Wardhana, I. G. A. W. (2022). The prime submodule of the integer module over itself. Eigen Mathematics Journal, 5(1), 27-30.
  2. Fibriyanti, R. A. W., & Wijayanti, I. E. (2022). Diameter Dan Girth Graf Nilpoten Ring Matriks. Journal of Fundamental Mathematics and Applications (JFMA), 5(2), 35-53.
  3. Humaira, S., Astuti, P., Muchtadi-Alamsyah, I., & Erfanian, A. (2022). The matrix Jacobson graph of finite commutative rings. Electronic Journal of Graph Theory and Applications (EJGTA), 10(1), 181-197.
  4. Juliana, R., Wardhana, I. G. A. W., & Irwansyah. (2021). Some characteristics of cyclic prime, weakly prime and almost prime submodule of Gaussian integer modulo over integer. AIP Conference Proceedings, 2329(1), 020004.
  5. Maulana, F., Wardhana, I. G. A. W., & Switrayni, N. W. (2019). Ekivalensi Ideal Hampir Prima dan Ideal Prima pada Bilangan Bulat Gauss. Eigen Mathematics Journal, 2(1), 1-5.
  6. Nopendri, N., Muchtadi-Alamsyah, I., Suprijanto, D., & Barra, A. (2021). Cyclic Codes from a Sequence over Finite Fields. European Journal of Pure and Applied Mathematics, 14(3), 685-694.
  7. Saleh, K., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On the structure of finitely generated primary modules. JP Journal of Algebra, Number Theory and Applications, 38(5), 519.
  8. Switrayni, N. W., Wardhana, I. G. A. W., & Aini, Q. (2022). On Cyclic Decomposition Of Z-Module M_ {m×r}(Z_n), Journal of Fundamental Mathematics and Applications, 5(1), 47-51
  9. Switrayni, N. W., Wardhana, I. G. A. W. W., & Aini, Q. (2023). A Note on Free Module Decomposition over A Principal Ideal Domain. Journal of the Indonesian Mathematical Society, 29(2), 150–155.
  10. Wahyuni, S., Wijayanti, I. E., Yuwaningsih, D.A., & Hartanto, A.D. (2021). Teori ring dan modul. UGM PRESS.
  11. Wardhana, I. G. A. W. W., & Maulana, F. (2021). Sebuah Karakteristik dari Modul Uniserial dan Gelanggang Uniserial. Unisda Journal of Mathematics and Computer Science (UJMC), 7(2), 9-18.
  12. Wardhana, I. G. A. W. (2022). The Decomposition of a Finitely Generated Module over Some Special Ring. JTAM (Jurnal Teori dan Aplikasi Matematika), 6(2), 261-267.
  13. Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2), 121-138.
  14. Wijayanti, I. E., & Wisbauer, R. (2009). On coprime modules and comodules. Communications in Algebra, 37(4), 1308-1333.
  15. Yuwaningsih, D. A., & Wijayanti, I. E. (2015). On jointly prime radicals of (R, S)-modules. Journal of the Indonesian Mathematical Society, 25-34.

Open Access Copyright (c) 2023 Square : Journal of Mathematics and Mathematics Education
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Square : Journal of Mathematics and Mathematics Education
Published by Mathematic and Mathematic Education Department of Science and Technology Faculty, Universitas Islam Negeri Walisongo Semarang, Indonesia
Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: http://fst.walisongo.ac.id/
Email: square@walisongo.ac.id

ISSN: 2714-609X (Print)
ISSN: 2714-5506 (Online)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

apps