Perbandingan MAPE Metode Arima dan FTS Chen pada Peramalan Harga Minyak Mentah Widuri di Indonesia

Authors

  • Zakaria Bani Ikhtiyar Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang
  • Wellie Sulistijanti Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang
  • Silvia Novita Sari Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang
  • Adiyah Mahiruna Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

DOI:

https://doi.org/10.21580/square.2024.6.2.23579

Abstract

The need for crude oil greatly affects economic activities on a micro and macro scale. Indonesia is one of the countries that produces crude oil, although the amount produced is not as large as countries in the Middle East. The global price of crude oil has a direct impact on Indonesia's rising fuel prices. To find out the world price of crude oil in the future, forecasting can be done. Widuri type crude oil is one of the crude oils that is a priority in Indonesia. This study compares the accuracy of forecasting the price of Widuri type crude oil with the MAPE accuracy calculation method and the forecasting method compared is the ARIMA method with the FTS Chen method.

Keywords: forecasting, Oil, ARIMA, Fuzzy Time Series (FTS) Chen.

Downloads

Download data is not yet available.

Author Biography

Wellie Sulistijanti, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang

References

Elfajar, A. B., Setiawan, B. D., & Dewi, C. (2017). Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 1(2), 85–94.

Ferryan, D. A., Intan, P. K., & Hafiyusholeh, M. (2022). Peramalan Harga Minyak Mentah di Indonesia dengan Metode Regresi Polinomial. Jurnal Ilmiah Matematika Dan Terapan, 19(1), 13–18.

Indah Lestari, Sumargo, B., & Ladayya, F. (2022). Pemodelan ARIMA Intervensi Untuk Meramalkan Harga Minyak Mentah Dunia. STATISTIKA Journal of Theoretical Statistics and Its Applications, 22(2), 133–146.

Lestari, S., & Yurinanda, S. (2023). Prediksi Pajak Pertambahan Nilai pada Penyediaan Jasa dengan Metode Fuzzy Time Series Model Chen. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 11(2), 267–281.

Qiu, W., Liu, X., & Li, H. (2011). A generalized method for forecasting based on fuzzy time series. Expert Systems with Applications, 38(8), 10446–10453.

Rahmawati, A., & Sulistijanti, W. (2023). Peramalan Harga Penutupan Saham PT . Unilever Indonesia Dengan Menggunakan Metode Fuzzy Time Series Lee. Jurnal Mirai Management, 8(2), 367–378.

Safitri, A. M., Anwar, K., & Abbas, T. (2022). Pengaruh Harga Minyak Dunia, Inflasi, Dan Ekspor Neto Terhadap Pertumbuhan Ekonomi Di Indonesia. Jurnal Ekonomi Regional Unimal, 5(1), 21.

Setyonugroho, A., Damar, A., & Nurjaya, I. W. (2019). Oil Spill Mitigation Risk Analysis, A Study Case: Western of Java Sea. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 9(3), 826–839.

Wijaya, A. R. (2023). Model Prediksi Data Harga Minyak Mentah Dunia Dengan Metode Exponential Smoothing. Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster), 12(1), 21–28.

Yusnitasari, A. (2020). Peramalan Inflasi Indonesia dengan Menggunakan Metode ARIMA Box-Jenkins. Paradigma Multidisipliner, 1(1), 1–12.

Downloads

Published

2024-10-30

Issue

Section

Articles