Handling Multicollinearity using Least Absolute Shrinkage and Selection Operator Regression on Per Capita Expenditure Data

Authors

  • Della Setya Rahma UIN Walisongo Semarang, Indonesia
  • Eva Khoirun Nisa UIN Walisongo Semarang, Indonesia

Keywords:

LASSO regression, LAR, Multicollinierity, Per capita expenditure

Abstract

Multicollinearity is a problem that must be addressed when using regression. Multicollinearity often occurs in socioeconomic data, such as Per Capita Expenditure. Several relevant studies have shown that Least Absolute Shrinkage and Selection Operator (LASSO) regression is a good method for handling multicollinearity. Additionally, it produces the simple model. Meanwhile, the Least Angle Regression (LAR) algorithm works effectively in model optimization, especially when multicollinearity occurs in multiple variables. Therefore, this study aims to handle multicollinearity with LAR LASSO regression in the specific case of per capita expenditure data in Wonosobo with many variables experiencing multicollinearity. The result study is LAR LASSO regression successfully eliminated two of the four predictor variables that exhibited multicollinearity by reducing the regression coefficients on the two predictor variables to zero. The best regression model obtained produces two significant coefficients so that Per Capita Expenditure in Wonosobo was influenced by the Human Development Index and Average Years of Schooling.

Downloads

Download data is not yet available.

References

Aprihartha, Moch. A., & Idham. (2024). Optimization of Classification Algorithms Performance with k-Fold Cross Validation. Eigen Mathematics Journal, 7(2).

Badan Pusat Statistik. (2025, April 10). Adjusted Per Capita Expenditure (PPP) of Male (Thousand Rupiah/Person/Year). BPS-Statistics Indonesia Wonosobo Regency.

Berrar, D. (2019). Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology (pp. 542–545). Elsevier.

BPS. (2022). https://www.bps.go.id/subject/26/indeks-pembangunan-manusia.html#subjekViewTab1.

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32(2).

Febriani Sagala, I., Romadhoni, A. F., Mardiana, A., Widyasari, A., Simamora, D. R., Nurfadiah, D., Ananda, E., Sembiring, B., Harahap, I. A., Siregar, E., Alif, M. F., Adella, N., Augustian, R., 12, S., & Sihotang, R. F. (2024). Analisis Pengaruh Indeks Pembangunan Manusia dan Pengangguran Terhadap Tingkat Kemiskinan di Sumatera Utara Menggunakan Metode Regresi Linear Berganda. Jurnal Matematika dan Ilmu Pengelatuan Alam, 2(2), 309–324.

Ghozali, I. (2011). Aplikasi Analisis Multivariate dengan Program IBM SPSS 19. Badan Penerbit Universitas Diponegoro.

Ginting, D. I., & Lubis, I. (2023). Pengaruh Angka Harapan Hidup dan Harapan Lama Sekolah terhadap Indeks Pembangunan Manusia. Jurnal Bisnis Net, 6.

Gujarati, D. N., & Porter, D. C. (2009). Basic Econometrics (5th ed.). McGraw-Hill.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer.

Jamco, J. C., Kondolembang, F., & Noya Van Delsen, M. S. (2023). Penanganan Multikolinearitas pada Regresi Linier Berganda Menggunakan Regresi Lasso (Studi Kasus: Distribusi Presentase Produk Domestik Regional Bruto di Provinsi Maluku Tahun 1999-2021). PARAMETER: Jurnal Matematika, Statistika dan Terapannya, 2(02), 145-154.

Kadir. (2008). Kemampuan Komunikasi Matematik dan Keterampilan Sosial Siswa dalam Pembelajaran Matematika. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied Linear Statistical Models. McGraw-Hill.

Manurung, E. N., & Hutabarat, F. (2021). Pengaruh Angka Harapan Lama Sekolah, Rata-Rata Lama Sekolah, Pengeluaran per Kapita Terhadap Indeks Pembangunan Manusia. Jurnal Ilmiah Akuntansi Manajemen, 4(2), 121-129.

Mubarak, R. (2021). Pengantar ekonometrika (1st ed.). Duta Media Publishing.

Nasution, E. F., & Pane, R. (2024). Perbandingan Regresi Lasso dan Principal Component Regression dalam Mengatasi Masalah Multikolinearitas. In Journal of Mathematics Education and Science, 10(1).

Nisa, E. K., & Maulina, R. (2024). The Comparison of Inverse Gaussian and Gamma Regression: Application on Stunting Data in Jepara. Jurnal Matematika, Statistika Dan Komputasi, 21(1), 334–344.

Nizar, F., & Arif, M. (2023). Pengaruh Rata Lama Sekolah, Pengeluaran Perkapita, Pendapatan Asli Daerah, Investasi, Tingkat Pengangguran Terbuka Terhadap Tingkat Kemiskinan di Nusa Tenggara Barat Tahun 2012-2021. KOMITMEN: Jurnal Ilmiah Manajemen, 4(1).

Rahayu, A., & Husein, I. (2023). Comparison of Lasso and Adaptive Lasso Methods in Identifying Variables Affecting Population Expenditure. Sinkron: Jurnal Dan Penelitian Teknik Informatika, 8(3), 1435-1445.

Rahmawati, F., Yoga Suratman, R., Magister Matematika, A., & Gadjah Mada, U. (2022). Performa Regresi Ridge dan Regresi Lasso pada Data dengan Multikolinearitas. Leibniz : Jurnal Matematika.

Sianturi, A., Tampubolon, A., & Nasution, M. (2024). Pengaruh Pengeluaran Perkapita dan Angka Harapan Hidup terhadap Pertumbuhan Ekonomi Kota Medan 2010-2021. Jurnal Sosial Humaniora Sigli, 7(2).

Soleh, A. M., & Aunuddin. (2013). Lasso : Solusi Alternatif Seleksi Peubah dan Penyusutan Koefisien Model Regresi Linier. FSK : Indonesian Journal of Statistics, 18(1), 21–27.

Tibshirani, R. (2011). Regression Shrinkage and Selection via The Lasso: A Retrospective. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(3), 273–282.

Wijiyanto, W., Pradana, A. I., Sopingi, S., & Atina, V. (2024). Teknik K-Fold Cross Validation untuk Mengevaluasi Kinerja Mahasiswa. Jurnal Algoritma, 21(1).

Zhang, Y., Jin, W., Li, Z., & Pan, W. (2024). A brief discussion on the role of data standardization in regional centralized control construction on the refined management of wind power production. E3S Web of Conferences, 561, 02006.

Downloads

Published

2025-04-30

Issue

Section

Articles