Green Synthesis And Characterization of Zinc Oxide Nanoparticles Using Jatropha Curcas for Enhanced Antibacterial Potential

Authors

  • Oluwaseyi Bukky Ovonramwen Department of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
  • Ngozi Nwaogu Department of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
  • Iyobosa Gift Okunzuwa Department of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
  • Uwaila Omoruyi Department of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria

DOI:

https://doi.org/10.21580/wjc.v7i1.20629

Keywords:

secondary metabolites, capping agent, Jatropha carcus, green synthesis, nanotechnology

Abstract

Green-synthesized nanoparticles offer various advantages over conventionally physico-chemically synthesized nanoparticles. These synthesized nanoparticles have various biological and medicinal applications. In this study, zinc oxide nanoparticles were synthesized using the leaf extract of Jatropha curcas and zinc acetate dihydrate (as a precursor) for nanoparticle synthesis. The optical, functional group, morphological, and structural properties of the synthesized nanoparticles were investigated using ultraviolet-visible spectrophotometers (UV-Vis), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and the antibacterial analysis was done using the agar dilution method against some Gram-positive, Staphylococcus aureus, and Gram-negative E. coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. The formation of ZnO NPs was confirmed by a change in the color of the reaction mixture. UV peaks at 290 nm confirm the presence of ZnO NPs. In contrast, the presence of various bioactive functional groups responsible for reducing the bulk zinc acetate dihydrate to ZnO NPs was confirmed using FTIR. SEM analysis showed that the nanoparticles are spherical. Green-synthesized JC-ZnO NPs demonstrated important antibacterial activities when tested against certain bacteria strains; this implies that plant-synthesized nanoparticles can be used to develop many critical biomedical products.

Downloads

Download data is not yet available.

Author Biography

Oluwaseyi Bukky Ovonramwen, Department of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria

Department of Chemistry, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria

References

Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C. and Oyedeji, A. O. (2022), Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications, Biomolecules, 12 (5), 627. https://doi.org/10.3390/biom12050627.

Anandalakshmi, K. (2021), Green Synthesis of Silver Nanoparticles Using Plant Extracts – A Review, Plant Archives, 21 (Suppliment-1), 2091–2097. https://doi.org/10.51470/plantarchives.2021.v21.s1.345a

Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H. and Hano, C. (2021), Recent advances in zinc oxide nanoparticles (ZNO NPs) for cancer diagnosis, target drug delivery, and treatment, Cancers, 13 (18), 4570. https://doi.org/10.3390/cancers13184570.

Bastos, E. M. S., Da Silva, A. B., Coelho, P. L. C., Borges, J. M. P., Da Silva, V. D. A., Moreau, V. H. and Costa, S. L. (2021), Anti-inflammatory activity of Jatropha curcas L. in brain glial cells primary cultures, Journal of Ethnopharmacology, 264, 113201. https://doi.org/10.1016/j.jep.2020.113201.

Chinnathambi, A. and Alahmadi, T. A. (2021), Zinc nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract: Chemical characterization and cytotoxicity, antioxidant, and anti-osteosarcoma effects, Arabian Journal of Chemistry, 14 (4), 103083. https://doi.org/10.1016/j.arabjc.2021.103083.

Doria-Manzur, A., Sharifan, H. and Benítez, L. P. T. (2022), Application of zinc oxide nanoparticles to promote remediation of nickel by Sorghum bicolor: metal ecotoxic potency and plant response, International Journal of Phytoremediation, 25 (1), 98–105. https://doi.org/10.1080/15226514.2022.2060934.

Enggrianti, E., Astuty, S. D., Armynah, B., Bannu, B. and Zain, M. (2023), The analysis of potency of castor leaf extract (Jatropha curcas L.) after radiating with a red laser to inhibit the growth of oxygenated Staphylococcus epidermidis biofilm, AIP Conference Proceedings 2719, 020007. https://doi.org/10.1063/5.0133318.

Fouda, A., Hassan, S. E., Salem, S. S. and Shaheen, T. I. (2018), In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications, Microbial Pathogenesis, 125, 252–261. https://doi.org/10.1016/j.micpath.2018.09.030

Fu, R., Zhang, Y., Guo, Y., Liu, F. and Chen, F. (2014), Determination of phenolic contents and antioxidant activities of extracts of Jatropha curcas L. seed shell, a by-product, a new source of natural antioxidant, Industrial Crops and Products, 58, 265–270. https://doi.org/10.1016/j.indcrop.2014.04.031.

Ge, J., Liu, Z., Zhong, Z., Wang, L., Zhuo, X., Li, J., Jiang, X., Ye, X., Xie, T. and Bai, R. (2022), Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery, Bioorganic Chemistry, 124, 105817. https://doi.org/10.1016/j.bioorg.2022.105817.

Gudkov, S. V., Burmistrov, D., Serov, D. A., Rebezov, M., Semenova, A. and Lisitsyn, A. B. (2021). A mini review of antibacterial properties of ZNO nanoparticles. Frontiers in Physics, 9. https://doi.org/10.3389/fphy.2021.641481.

Haider, A., Ijaz, M., Ali, S. A., Haider, J., Imran, M., Majeed, H., Shahzadi, I., Ali, M. M., Khan, J. A., and Ikram, M. (2020), Green Synthesized Phytochemically (Zingiber officinale and Allium sativum) Reduced Nickel Oxide Nanoparticles Confirmed Bactericidal and Catalytic Potential, Nanoscale Research Letters, 15 (1). https://doi.org/10.1186/s11671-020-3283-5.

Haq, A., Mushtaq, S., Khan, A. Z., Islam, A., Khan, H. M. S., Malik, Z. A., Younas, F., Khan, S., Shah, A. A. and Badshah, M. (2021), Evaluation of phytochemical, bioactive, and antifungal potential of Jatropha curcas seed oil and de-oiled seed cake extracts against phytopathogenic fungi, Journal of Plant Pathology, 103 (3), 863–873. https://doi.org/10.1007/s42161-021-00864-8.

Irmaleny. (2022). Median lethal dose (LD50) test of analgesic herbal Jatropha curcas L. latex on animal models. Universitas Indonesia.

Lavate, D. A., Sawant, V. and Khomane, A. (2019). Synthesis, characterization, and catalytic properties of zinc oxide nanoparticles for the treatment of wastewater in the presence of natural sunlight. Chemical Papers, 74 (3), 879–885. https://doi.org/10.1007/s11696-019-00919-2

Lokanata, S., Molek, and Siregar, M. A. (2023), Antibacterial Effectiveness of Jatropha Leaf Extract (Jatropha curcas L.) against Aggregatibacter actinomycetemcomitans: In Vitro Study, Bioscientia Medicina, 7 (1), 3013–3017. https://doi.org/10.37275/bsm.v7i1.754

López-Miranda, J. L., Molina, G. A., González-Reyna, M. A., España-Sánchez, B. L., Esparza, R., Silva, R. and Estevez, M. (2023), Antibacterial and Anti-Inflammatory properties of ZNO nanoparticles synthesized by a green method using sargassum extracts, International Journal of Molecular Sciences, 24(2), 1474. https://doi.org/10.3390/ijms24021474.

Luque, P., Garrafa-Gálvez, H., García-Maro, C. and Robles, C. S. (2022), Study of the optical properties of ZnO semiconductor nanoparticles using Origanum vulgare and its effect in Rhodamine B degradation, Optik, 258, 168937. https://doi.org/10.1016/j.ijleo.2022.168937

Mohamed, A., Dardiry, M., Samad, A. and Abdelrady, E. (2019). Exposure to Lead (Pb) Induced Changes in the Metabolite Content, Antioxidant Activity and Growth of Jatropha curcas (L.). Tropical Plant Biology, 13(2), 150–161. https://doi.org/10.1007/s12042-019-09244-0.

Osoniyi, O. and Onajobi, F. (2003), Coagulant and anticoagulant activities in Jatropha curcas latex, Journal of Ethnopharmacology, 89 (1), 101–105. https://doi.org/10.1016/s0378-8741(03)00263-0.

Rahman, F., Patwary, M. a. M., Siddique, M. a. B., Bashar, M. S., Haque, M. A., Akter, B., Rashid, R., Haque, M. A., & Uddin, A. K. M. R. (2022), Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity, Royal Society Open Science, 9 (11). https://doi.org/10.1098/rsos.220858.

Rahu, M. I., Naqvi, S. H. A., Memon, N. H., Idrees, M., Kandhro, F., Pathan, N. L., Sarker, N. I. and Bhutto, M. A. (2021), Determination of antimicrobial and phytochemical compounds of Jatropha curcas plant, Saudi Journal of Biological Sciences, 28 (5), 2867–2876. https://doi.org/10.1016/j.sjbs.2021.02.019.

Sangeetha, J., Divya, K. H., Prashanth, M. V., Vamsikrishna, A. and Rani, G. L. (2010), Anti-Inflammatory and Antibacterial Activity of Jatropha curcas Linn, Asian Journal of Pharmaceutical Research and Health Care, 2 (3), 258–262.

Rohani, R., Dzulkharnien, N. S. F., Harun, N. H., & Ilias, I. A. (2022), Green Approaches, potentials, and applications of zinc oxide nanoparticles in surface coatings and films, Bioinorganic Chemistry and Applications, 2022, 1–22. https://doi.org/10.1155/2022/3077747.

Tade, R. S., Nangare, S., Patil, A., Pandey, A., Deshmukh, P. K., Patil, D. R., Agrawal, T. N., Mutalik, S., Patil, A. M., More, M. P., Bari, S. B. and Patil, P. O. (2020), Recent Advancement in Bio-precursor derived graphene quantum dots: Synthesis, Characterization and Toxicological Perspective, Nanotechnology, 31 (29), 292001. https://doi.org/10.1088/1361-6528/ab803e.

Tymoszuk, A. and Wojnarowicz, J. (2020), Zinc Oxide and Zinc Oxide Nanoparticles Impact on In Vitro Germination and Seedling Growth in Allium cepa L, Materials, 13 (12), 2784. https://doi.org/10.3390/ma13122784

Wang, S., Jia, F., Wang, X., Hu, L., Sun, Y., Yin, G., Zhou, T., Feng, Z., Kumar, P. and Liu, B. (2020), Fabrication of ZNO nanoparticles modified by uniformly dispersed AG nanoparticles: Enhancement of gas sensing performance, ACS Omega, 5 (10), 5209–5218. https://doi.org/10.1021/acsomega.9b04243.

Zhou, X., Hayat, Z., Zhang, D., Li, M., Si, H., Wu, Q., Cao, Y. and Yuan, Y. (2023), Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture, Processes, 11 (4), 1193. https://doi.org/10.3390/pr11041193.

Downloads

Published

2024-07-31