Identification of alteration zone and gold mineralization based on magnetic anomaly and 3D model of geomagnetic satellite data inversion of Mount Pongkor Area, West Java

Nanda Ridki Permana*  -  PT. Minelog Services Indonesia, Indonesia
Belista Gunawan  -  GeoXplore Indonesia, Indonesia
Ayu Alvita Primastika  -  GeoXplore Indonesia, Indonesia
Dias Shafa  -  GeoXplore Indonesia, Indonesia
Dhika Faiz Fadrian  -  Universitas Islam Negeri Syarif Hidayatullah Jakarta, Indonesia
Fardhan Rafshan Zani  -  Universitas Islam Negeri Syarif Hidayatullah Jakarta, Indonesia

(*) Corresponding Author

Mount Pongkor is one of the areas in Indonesia with the largest gold mineralization potential in Java. One of the geophysical methods to identify the distribution of gold mineralization zones is the geomagnetic method that utilizes magnetic properties in the subsurface due to the influence of rock magnetization. Geomagnetic research has been conducted at Mount Pongkor, Bogor Regency, West Java with an area of 22 x 17 km as much as 793 magnetic satellite data from the National Oceanic and Atmospheric Administration (NOAA) website that has been corrected daily. This study aims to determine the distribution of alteration zones and mineralization of the study area. The results showed that the RTP map shows the distribution of magnetic anomalies ranging from -4.786 – 4.663 nT, with high anomalies in the north-south direction associated with mineralization zones with anomaly values ranging from 1.881 – 4.663 nT and low anomalies in the north-south direction associated with rock alteration zones with anomaly values ranging from -4,786 - (-2.174) nT.  In the 3D inversion model, the alteration zone has an average depth of 350 - 2600 m from topography with susceptibility contrast values ranging from -0.35 - (- 0.25) SI and the mineralization zone has an average depth of 350 - 2800 m from topography with susceptibility contrast values of 0.25 - 0.35 SI.

©2022 JNSMR UIN Walisongo. All rights reserved.

Keywords: alteration; Mount Pongkor; geomagnetic method; mineralization

  1. L.O.M.Y. Amsah and E.P. Umar, “Identifikasi Zona Mineralisasi Emas Menggunakan Metode Resistivitas Dan
  2. Induksi Polarisasi (IP) di Desa Lintidu Kabupaten Buol," J. Geocelebes, vol. 4, no. 2, pp. 144-149, 2020.
  3. F. Firmansyah and A. Budiman, “Pendugaan Mineralisasi Emas menggunakan Metode Magnetik di Nagari Lubuk Gadang Kecamatan Sangir, Solok Selatan, Sumatera Barat," J. Fisika Unand, vol. 8, no. 1, pp. 77-83, 2019.
  4. O. Wibowo, Interpretasi Data Anomali Medan Magnet Total untuk Mengestimasi Potensi Sumber Daya Mineral Emas di Desa Paningkaban Kecamatan Gumelar Kabupaten Banyumas, Purwokerto: Jenderal Soedirman University.
  5. A.H.P. Yuniarto, “Metode Induced Polarization dan Resistivitas dalam Eksplorasi Emas di Blok “CPY” Gunung Pongkor Kabupaten Bogor," J. Geosaintek, vol. 6, no. 3, pp. 117-126, 2020.
  6. S.S. Briyantara dan T. Yulianto, "Aplikasi Metode Magnetik untuk Melokalisasi Target Zona Mineralisasi Emas di Daerah 'X," Youngster Physics Journal, vol. 4, no. 1, pp. 1-6, 2015.
  7. R. Aprianto and K.S. Brtopuspito, "Analisa Suseptibilitas Magnetik Batuan Pengeboran di Blok Elang Sumbawa," J. Pend. Fisika dan Teknologi, vol. 1, no. 3, pp. 226-234. 2015.
  8. J.P. Milési, E. Marcoux, T. Sitorus, M. Simandjuntak, J. Leroy, and L. Bailly, “Pongkor (West Java, Indonesia): A Pliocene supergene-enriched epithermal Au-Ag-(Mn) deposit,” Miner. Depos., vol. 34, no. 2, pp. 131–149, 1999, doi: 10.1007/s001260050191.
  9. M.I.A. Natsir, J. Safani, and E. Anshari, "Interpretasi Sebaran Zona Mineralisasi Emas berdasarkan Metode Polarisasi Terinduksi di Daerah 'Y' Gunung Pongkor Jawa Barat," J. Rekayasa Geofisika Indonesia, pp. 24-35, 2019.
  10. N.N. Iklima, H. Pudjihardjo, D.A. Widiarso, and Y. Purnama, “Analisis Potensi Aliran Airtanah berdasarkan Delineasi Nilai Permeabilitas Sekunder, Pada Tambang Bawah Permukaan, Ciurug Central L. 500, Unit Bisnis Pertambangan Emas, PT. Aneka Tambang Tbk, Pongkor, Kabupaten Bogor, Jawa Barat,” Geological Engineering E-Journal, vol. 5, no. 2, 2013.
  11. A.C. Effendi, Kusnama, and B. Hermanto, “Peta Geologi Lembar Bogor, Jawa Skala 1:100.000," Bandung: Pusat Penelitian dan Pengembangan Geologi, 1995.
  12. Faeyumi, Sebaran Potensi Emas Epitermal Di Areal Eksploitasi Pt Antam Unit Geomin, Tbk Kecamatan Nanggung Kabupaten Bogor, Depok: University of Indonesia, 2012.
  13. R.A. Kahfi and Yulianto, "Identifikasi Struktur Lapisan Bawah Permukaan Daerah Manifestasi Emas dengan menggunakan Metode Magnetik di Papandayan, Garut, Jawa Barat," J. Berkala Fisika, vol. 11, no. 4, pp. 127.
  14. Ismail, Metode Magnetik, Surakarta: Universitas Sebelas Maret, 2010.
  15. B.J. Santosa, “Magnetic Method Interpretation to Determine Subsurface Structure Around Kelud Volcano," Indian Journal of Applied Research, vol. 3, no. 5, pp. 328-331, 2013.
  16. S. Rusita, S. S. Siregar, and I. Sota, "Identifikasi Sebaran Bijih Besi dengan Metode Geomagnet di Daerah Pemalongan, Bajuin Tanah Laut", J. Fisika FLUX, vol. 13 no.1, pp. 49 –59, 2016.
  17. G. Rumahorbo, A. Muhammad, and T.W. Setiaji, "Aplikasi Metode Geomagnetik untuk Mngidentifikasi Struktur Geologi Bawah Permukaan sebagai Pengontrol Adanya Mineralisasi pada Desa Kaligono, Kecamatan Kaligesing, Kabupaten Purworejo, Jawa Tengah", Prosiding Seminar Nasional Kebumian 12, Yogyakarta: Gadjah Mada University, pp. 1247-1261, 2019.
  18. W.N. Telford, L.P. Geldard, R.E. Sheriff, and D.A. Keys, Applied Geophysics, New York: Cambridge University Press, 1979.
  19. E. Juniarti, Identifikasi Reservoar Geothermal di Kompleks Kawah Wurung-Ijen, Kabupaten Bondowoso, Jawa Timur dengan Metode Magnetik dan Penginderaan Jauh, Malang: Brawijaya University.
  20. A.J. Ahmad, M. Syarifin, Y.A.D. Sousa, and I.S. Tumalang, “Analisis Data Magnetik Bawah Permukaan untuk Identifikasi Sebaran Mineral Mangan Desa Tolnaku, Kecamatan Fatuleu, Kabupaten Kupang," J. Teknologi Mineral dan Batubara, vol. 15, no. 3, pp. 145-157, 2019.
  21. W. Utama, D.D. Warnana, A. Hilyah, S. Bahri, F. Syaifuddin, and H. Farida, “Eksplorasi Geomagnetik untuk Penentuan Keberadaan Pipa Air di Bawah Permukaan Bumi," J. Geosaintek, vol. 2, no. 3, pp. 157-164, 2016.
  22. Santosa, B.J., Interpretasi Metode Magnetik untuk Penentuan Struktur Bawah Permukaan di Sekitar Gunung Kelud Kabupaten Kediri, Surabaya: Institut Teknologi Sepuluh November, 2012.
  23. T. Tampubolon and M.A.T. Harahap, “Identifikasi Anomali Magnetik Bawah Permukaan Daerah Gunung Sinabung," J. Einstein, vol. 5, no. 2, pp. 1-6, 2017.
  24. H. Grandis, Introduction to Geophysical Inversion Modeling, Bandung: CV. Bhumi Printing, 2009.
  25. Hartini, "Pemodelan Inversi Linier Least-Square (LS) Pada Anomali Geomagnet Model Dyke," J. Hadron, vol. 2, no. 2, pp. 49-53, 2020.
  26. J. Reid, "Introduction to Geophysical Modelling and Inversion", Mira Geoscience, pp. 1-53, 2014.
  27. B. Gunawan, A. Anjani, A. Anjalni, "Identifikasi Pemodelan 2D dan Suhu Permukaan Daerah Panas Bumi Gunung Gede-Pangrango, Jawa Barat menggunakan Metode Gravitasi", J. of Engineering Environtmental Energy and Science, vol. 1, no. 1, pp. 1-14, 2022.

Open Access Copyright (c) 2022 Journal of Natural Sciences and Mathematics Research
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Natural Sciences and Mathematics Research
Published by Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/JNSMR
Email:[email protected]

ISSN: 2614-6487 (Print)
ISSN: 2460-4453 (Online)

View My Stats

Lisensi Creative Commons

This work is licensed under a Creative Commons Lisensi Creative Commons .

apps