Fixed point results in α, β partial b-metric spaces using C-contraction type mapping and its generalization

Ahmad Ansar*  -  Universitas Sulawesi Barat, Indonesia
Syamsuddin Mas'ud  -  Universitas Negeri Makassar, Indonesia

(*) Corresponding Author

Banach contraction mapping has main role in nonlinear analysis courses and has been modified to get new kind of generalizations in some abstract spaces to produce many fixed point theory. Fixed point theory has been proved in partial metric spaces and b-metric spaces as generalizations of metric spaces to obtain new theorems. In addition, using modified of contraction mapping we get some fixed point that have been used to solve differential equations or integral equations, and have many applications. Therefore, this area is actively studied by many researchers. The goal of this article is present and prove some fixed point theorems for extension of contraction mapping in α, β partial b-metric spaces. In this research, we learn about notions of b-metric spaces and partial metric that are combined to generated partial b-metric spaces from many literatures. Afterwards, generalizations are made to get α, β partial b-metric spaces. Using the properties of convergence, Cauchy sequences, and notions of completeness in α, β partial b-metric spaces, we prove some fixed point theorem. Fixed point theory that we generated used C-contraction mapping and its generalizations with some conditions. Existence and uniqueness of fixed point raised for some restrictions of α, β conditions. Some corollaries of main results are also proved. Our main theorems extend and increase some existence in the previous results.

©2022 JNSMR UIN Walisongo. All rights reserved.

Keywords: b-metric; partial metric; fixed point

  1. S. G. Matthews, “Partial Metric Topology,” Ann N Y Acad Sci, vol. 728, no. 1, pp. 183–197, Nov. 1994, doi: 10.1111/j.1749-6632.1994.tb44144.x.
  2. I. A. Bakhtin, “The Contraction Mapping Principle in Quasi-Metric Spaces,” Functional Analysis, vol. 30, pp. 26–37, 1989.
  3. S. Czerwik, “Contraction mappings in b-metric spaces,” Acta Mathematica et Informatica Universitatis Ostraviensis, vol. 1, no. 1, pp. 5–115, 1993, [Online]. Available: http://dml.cz/dmlcz/120469%0Ahttp://project.dml.cz
  4. S. Aleksić, H. Huang, Z. D. Mitrović, and S. Radenović, “Remarks on some fixed point results in b-metric spaces,” J. Fixed Point Theory Appl., vol. 20, no. 147, Nov. 2018, doi: 10.1007/s11784-018-0626-2.
  5. K. Jain and J. Kaur, “Some Fixed Point Results in B-Metric Spaces,” axioms, vol. 10, no. 55, pp. 1–15, 2021, doi: 10.14445/22315373/ijmtt-v55p506.
  6. M. Nazam, Z. Hamid, H. al Sulami, and A. Hussain, “Common Fixed-Point Theorems in the Partial b-Metric Spaces and an Application to the System of Boundary Value Problems,” Journal of Function Spaces, vol. 2021, 2021, doi: 10.1155/2021/7777754.
  7. A. Gupta and P. Gautam, “Quasi-partial b-metric spaces and some related fixed point theorems,” Fixed Point Theory and Applications, vol. 2015, no. 18, 2015, doi: 10.1186/s13663-015-0260-2.
  8. H. Aydi and S. Czerwik, “Fixed Point Theorems in Generalized b-Metric Spaces,” Modern Discrete Mathematics and Analysis, vol. 131, pp. 1–9, 2018, doi: 10.1007/978-3-319-74325-7_1.
  9. Z. Mustafa, J. R. Roshan, V. Parvaneh, and Z. Kadelburg, “Some common fixed point results in ordered partial b-metric spaces,” 2013. [Online]. Available: http://www.journalofinequalitiesandapplications.com/content/2013/1/562
  10. T. Rashid, M. M. M. Jaradat, Q. H. Khan, Z. D. Mitrović, H. Aydi, and Z. Mustafa, “A new approach in the context of ordered incomplete partial b-metric spaces,” Open Mathematics, vol. 18, no. 1, pp. 996–1005, Jan. 2020, doi: 10.1515/math-2020-0054.
  11. P. Gautam, L. M. Sánchez Ruiz, S. Verma, and G. Gupta, “Common Fixed Point Results on Generalized Weak Compatible Mapping in Quasi-Partial b-Metric Space,” Journal of Mathematics, vol. 2021, 2021, doi: 10.1155/2021/5526801.
  12. H. Afshari, “Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces,” Advances in Difference Equations, vol. 2019, no. 285. Springer International Publishing, Dec. 01, 2019. doi: 10.1186/s13662-019-2227-9.
  13. H. Huang and S. Xu, “Fixed point theorems of contractive mappings in cone b-metric spaces and applications,” 2013. [Online]. Available: http://www.fixedpointtheoryandapplications.com/content/2013/1/112
  14. M. B. Zada, M. Sarwar, and C. Tunc, “Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations,” J. Fixed Point Theory Appl., vol. 20, no. 1, pp. 1–19, Mar. 2018, doi: 10.1007/s11784-018-0510-0.
  15. Z. D. Mitrović, “Fixed point results in b-metric space,” Fixed Point Theory, vol. 20, no. 2, pp. 559–566, 2019, doi: 10.24193/fpt-ro.2019.2.36.
  16. S. Shukla, “Partial b-Metric Spaces and Fixed Point Theorems,” Mediterranean Journal of Mathematics, vol. 11, no. 2, pp. 703–711, 2014, doi: 10.1007/s00009-013-0327-4.
  17. J. Zhou, D. Zheng, and G. Zhang, “Fixed point theorems in partial b-metric spaces,” Applied Mathematical Sciences, vol. 12, no. 13, pp. 617–624, 2018, doi: 10.12988/ams.2018.8460.
  18. X. Fan, “Fixed point theorems for cyclic mappings in quasi-partial b-metric spaces,” Journal of Nonlinear Science and Applications, vol. 9, no. 5, pp. 2175–2189, 2016, doi: 10.22436/jnsa.009.05.22.
  19. N. van Dung, V. Thi, and L. Hang, “Remarks on Partial b-metric Spaces and Fixed Point Theorems,” MATEMATIˇCKI VESNIK, vol. 4, no. December, pp. 231–240, 2017.
  20. V. Parvaneh and Z. Kadelburg, “Extended partial b-metric spaces and some fixed point results,” Filomat, vol. 32, no. 8, pp. 2837–2850, 2018, doi: 10.2298/FIL1808837P.
  21. A. M. Hashim and H. A. Bakry, “Fixed points theorems for ciric ’ mappings in partial b-metric space,” Basrah Journal of Science, vol. 37, no. 1, pp. 16–24, 2019, doi: 10.29072/basjs.20190102.
  22. S. Pravin and S. Virath, “A Generalization of a Partial b-Metric and Fixed Point Theorems,” Aust. J. Math. Anal. Appl., vol. 19, no. 1, pp. 1–8, 2022.
  23. S. K. Chatterjea, “Fixed Point Theorems,” C.R. ACad., Bulgare Sci, vol. 25, pp. 727–730, 1972.
  24. P. Kumar Mishra, S. Sachdeva, and S. K. Banerjee, “Some Fixed Point Theorems in b-metric Space,” Turkish Journal of Analysis and Number Theory, vol. 2, no. 1, pp. 19–22, 2014, doi: 10.12691/tjant-2-1-5.
  25. L. . B. . Ćirić, “A Generalization of Banach’s Contraction Principle,” Proceedings of The American Mathematical Society, vol. 45, no. 2, pp. 267–273, 1974.

Open Access Copyright (c) 2022 Journal of Natural Sciences and Mathematics Research
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Natural Sciences and Mathematics Research
Published by Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/JNSMR
Email:jnsmr@walisongo.ac.id

ISSN: 2614-6487 (Print)
ISSN: 2460-4453 (Online)

View My Stats

Lisensi Creative Commons

This work is licensed under a Creative Commons Lisensi Creative Commons .

apps