Optimal control mathematical model of Zika Virus

Budi Cahyono*  -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Muhammad Abdurrahman Rois  -  Universitas Islam Negeri Walisongo Semarang, Indonesia

(*) Corresponding Author

Supp. File(s): Research Instrument

This study aims to describe the transmission of the Zika virus a mathematical model that was introduced by Ding, Tao, and Zhu (2016). Based on the analysis, obtained a disease-free equilibrium point, then the stability is seen from the basic reproduction number. The basic reproduction numbers show supporting factors and inhibitors of transmission of Zika virus. Then looking for optimal control, the principle is to control transmission of the Zika virus through reducing interactions between mosquitoes and humans, transmission from infected mosquitoes to susceptible humans, and estimates of mosquito deaths by being given insecticides. With the optimal control solution obtained, it produces a strategy to prevent and control the Zika virus and does not incur expensive costs.

©2020 JNSMR UIN Walisongo. All rights reserved.

Supplement Files

Keywords: Zika virus; optimal control; mathematical model; equilibrium point

  1. Kemenkes RI, Pedoman Pencegahan dan Pengendalian penyakit virus Zika, no. Oktober. Kementrian Kesehatan Republik Indonesia, 2017.
  2. WHO, “zika vir,” 2018. [Online]. Available: www.who.int/en/news-room/facts-sheets/detail/zika-virus.
  3. WHO, “Zika Virus Disease-Get the Fact,” 2016. [Online]. Available: www.searo.who.int/entity/indonesia/areas/ntd/who_zikavirus_factsheet_ino160202.pdf?
  4. C. Ding, N. Tao, and Y. Zhu, “A mathematical model of Zika virus and its optimal control,” Chinese Control Conf. CCC, vol. 2016–Augus, no. October, pp. 2642–2645, 2016.
  5. S. R. R. Yuliani, “Analisis Penyebaran Penyakit Diare Sebagai Salah Satu
  6. Penyebab Kematian Balita Menggunakan Model Matematika SIS,” Universitas Negeri Yogyakarta, 2016.
  7. Subiono, Sistem Linear dan Kontrol Optimal. Surabaya: Subiono Jurusan Matematika ITS Surabaya, 2013.
  8. Padilah, N.P., Solekhudin, I. Model Epidemi pada Tanaman. Yogyakarta: Universitas Gajah Mada, 2015.
  9. Sari, L.R. Model Matematika Infeksi Virus Hepatitis B dengan Adsorpsi. Jurnal Matematika Integratif, 13(2), 123-130. doi:10.24198/jmi.v13.n2.13665.123-130, 2017.
  10. Travel Advisory [Online]. Available: www.kemlu.go.id/canberra/id/berita-agenda/info-penting/Pages/travel%2520advisory.docx&ved=2ahUKEwjfyvXg_MPfAhWIK48KHQNGCcMQFjACegQICRAB&usg=AOvVaw3Bk6Rq2pOwoaEDNCbB_Rso

Open Access Copyright (c) 2020 Journal of Natural Sciences and Mathematics Research
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Natural Sciences and Mathematics Research
Published by Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/JNSMR
Email:[email protected]

ISSN: 2614-6487 (Print)
ISSN: 2460-4453 (Online)

View My Stats

Lisensi Creative Commons

This work is licensed under a Creative Commons Lisensi Creative Commons .

apps