Optimal control mathematical model of Zika Virus

Authors

  • Budi Cahyono Universitas Islam Negeri Walisongo Semarang
  • Muhammad Abdurrahman Rois Universitas Islam Negeri Walisongo Semarang

DOI:

https://doi.org/10.21580/jnsmr.2020.6.2.3155

Keywords:

Zika virus, optimal control, mathematical model, equilibrium point

Abstract

This study aims to describe the transmission of the Zika virus a mathematical model that was introduced by Ding, Tao, and Zhu (2016). Based on the analysis, obtained a disease-free equilibrium point, then the stability is seen from the basic reproduction number. The basic reproduction numbers show supporting factors and inhibitors of transmission of Zika virus. Then looking for optimal control, the principle is to control transmission of the Zika virus through reducing interactions between mosquitoes and humans, transmission from infected mosquitoes to susceptible humans, and estimates of mosquito deaths by being given insecticides. With the optimal control solution obtained, it produces a strategy to prevent and control the Zika virus and does not incur expensive costs.

©2020 JNSMR UIN Walisongo. All rights reserved.

Downloads

Download data is not yet available.

References

Kemenkes RI, Pedoman Pencegahan dan Pengendalian penyakit virus Zika, no. Oktober. Kementrian Kesehatan Republik Indonesia, 2017.

WHO, “zika vir,” 2018. [Online]. Available: www.who.int/en/news-room/facts-sheets/detail/zika-virus.

WHO, “Zika Virus Disease-Get the Fact,” 2016. [Online]. Available: www.searo.who.int/entity/indonesia/areas/ntd/who_zikavirus_factsheet_ino160202.pdf?

C. Ding, N. Tao, and Y. Zhu, “A mathematical model of Zika virus and its optimal control,” Chinese Control Conf. CCC, vol. 2016–Augus, no. October, pp. 2642–2645, 2016.

S. R. R. Yuliani, “Analisis Penyebaran Penyakit Diare Sebagai Salah Satu

Penyebab Kematian Balita Menggunakan Model Matematika SIS,” Universitas Negeri Yogyakarta, 2016.

Subiono, Sistem Linear dan Kontrol Optimal. Surabaya: Subiono Jurusan Matematika ITS Surabaya, 2013.

Padilah, N.P., Solekhudin, I. Model Epidemi pada Tanaman. Yogyakarta: Universitas Gajah Mada, 2015.

Sari, L.R. Model Matematika Infeksi Virus Hepatitis B dengan Adsorpsi. Jurnal Matematika Integratif, 13(2), 123-130. doi:10.24198/jmi.v13.n2.13665.123-130, 2017.

Travel Advisory [Online]. Available: www.kemlu.go.id/canberra/id/berita-agenda/info-penting/Pages/travel%2520advisory.docx&ved=2ahUKEwjfyvXg_MPfAhWIK48KHQNGCcMQFjACegQICRAB&usg=AOvVaw3Bk6Rq2pOwoaEDNCbB_Rso

Downloads

Additional Files

Published

2020-12-31

Issue

Section

Original Research Articles