Isolation and characterization of Humic Acid from organic waste as an adsorbent for Rhodamine B

Authors

Keywords:

chemistry

Abstract

Humic acid compounds are organic materials distributed across various terrestrial and aquatic ecosystems, playing a crucial role in environmental pollutant absorption. This study aims to isolate and characterize humic acid from organic waste as an adsorbent for rhodamine B. The isolation process of humic acid was conducted using the extraction method with 0.5 N NaOH solution followed by acidification using 3 M HCl solution. Characterization was carried out using a UV-Vis spectrophotometer and Fourier Transform Infrared (FTIR) spectrophotometer. The UV-Vis characterization results showed that the maximum wavelength of humic acid is 286 nm. FTIR analysis of humic acid indicates the presence of functional groups such as hydroxyl, carboxylate, and aromatic groups, consistent with the typical characteristics of humic acid. The adsorption kinetics was determined by interacting rhodamine B with humic acid after determining the optimal pH of 4, optimal time of 30 minutes, and optimal concentration of 20 ppm. The research results indicate that the adsorption kinetics of rhodamine B on humic acid follows pseudo-second-order kinetics with a reaction rate of 0.0566 min?¹ and follows the Freundlich adsorption isotherm.

Downloads

Download data is not yet available.

References

Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), 5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027

Chen, H., Koopal, L. K., Xiong, J., Avena, M., & Tan, W. (2017). Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 504, 457–467. https://doi.org/10.1016/j.jcis.2017.05.078

Doulia, D., Leodopoulos, C., Gimouhopoulos, K., & Rigas, F. (2009). Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science, 340(2), 131–141. https://doi.org/10.1016/j.jcis.2009.07.028

Fajar, M. (2019). Adsorpsi Ion Logam Berat Cd, Cu, dan Pb Menggunakan Kulit Kacang Tanah (Arachis Hypogaea. L). 1–9. https://doi.org/.1037//0033-2909.I26.1.78

Gomri, F., Finqueneisel, G., Zimny, T., Korili, S. A., Gil, A., & Boutahala, M. (2018). Adsorption of Rhodamine 6G and humic acids on composite bentonite–alginate in single and binary systems. Applied Water Science, 8(6), 1–10. https://doi.org/10.1007/s13201-018-0823-6

Machado, W., Franchini, J. C., de Fátima Guimarães, M., & Filho, J. T. (2020). Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon, 6(6). https://doi.org/10.1016/j.heliyon.2020.e04078

Maimunawaro, M., Rahman, S. K., & Irawan, C. (2021). Pemanfaatan Asam Humat Dari Sampah Organik Sebagai Adsorben Pada Limbah Cair Sintesis Timbal (Pb). Jurnal Teknik Kimia Indonesia, 19(1), 26. https://doi.org/10.5614/jtki.2020.19.1.5

Noorhidayah, R., Musthafa, M. B., & Sisno. (2021). Spectroskopi Fourier Transform Infrared (FTIR) Asam Humat dari Kompos Kotoran Ayam dengan Biodekomposer Berbeda. Jurnal Ilmu Tanah Dan Lingkungan, 23(1), 38–43. https://doi.org/10.29244/jitl.23.1.38-43

Nurlina, Intan, S., Mirna Tersiana, Tamnasi Chyntia, N., & Maria, D. F. (2021). Ektraksi dan Penentuan Gugus Fungsi Asam Humat dari Pupuk Kotoran Sapi. 4(1), 40–50.

Oyekanmi, A. A., Ahmad, A., Hossain, K., & Rafatullah, M. (2019). Adsorption of Rhodamine B dye from aqueous solution onto acid treated banana peel: Response surface methodology, kinetics and isotherm studies. PLoS ONE, 14(5), 1–20. https://doi.org/10.1371/journal.pone.0216878

Oyetade, O. A., Martincigh, B. S., & Skelton, A. A. (2018). Interplay between Electrostatic and Hydrophobic Interactions in the pH-Dependent Adsorption of Ibuprofen onto Acid-Functionalized Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 122(39), 22556–22568. https://doi.org/10.1021/acs.jpcc.8b06841

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to Spectroscopy (Fourth). Brooks/Cole Cengage Learning.

Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Shao, J., Liao, B., & Gu, J. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209–210, 193–198. https://doi.org/10.1016/j.jhazmat.2012.01.011

Postai, D. L., Demarchi, C. A., Zanatta, F., Melo, D. C. C., & Rodrigues, C. A. (2016). Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent. Alexandria Engineering Journal, 55(2), 1713–1723. https://doi.org/10.1016/j.aej.2016.03.017

Safrianti, I., Wahyuni, N., & Zaharah, T. A. (2012). Adsorpsi Timbal (II) Oleh Selulosa Limbah Jerami Padi Teraktivasi Asam Nitrat: Pengaruh pH DAN Waktu Kontak. JKK, 1(1), 44–48.

Sahara, E., Gayatri, P. S., & Suarya, P. (2018). Adsorpsi zat warna rhodamin-B dalam larutan oleh arang aktif batang tanaman gumitir teraktivasi asam fosfat. Cakra Kimia (Indonesian E-Journal of Applied Chemistry, 6(1), 37–45.

Stevenson. (1994). Humus Chemistry: Genesis, Composition, Reactions, 2nd Edition. Willey Interscience.

Wang, G., Qi, J., Wang, S., Wei, Z., Li, S., Cui, J., & Wei, W. (2017). Surface-bound humic acid increased rhodamine B adsorption on nanosized hydroxyapatite. Journal of Dispersion Science and Technology, 38(5), 632–641. https://doi.org/10.1080/01932691.2016.1185729

Weng, L., Van Riemsdijk, W. H., Koopal, L. K., & Hiemstra, T. (2006). Adsorption of humic substances on goethite: Comparison between humic acids and fulvic acids. Environmental Science and Technology, 40(24), 7494–7500. https://doi.org/10.1021/es060777d

Yuliyati, Y. B., & Natanael, C. L. (2016). Isolasi Karakterisasi T Asam Humat dan Penentuan Daya Serapnya Terhadap Ion Logam Pb(II) Cu(II) dan Fe(II). Al-Kimia, 4(1), 43–53. https://doi.org/10.24252/al-kimia.v4i1.1455

Downloads

Published

2024-12-02

Issue

Section

Original Research Articles