Indeks Topologi Padmakar Ivan dan Szeged pada Graf Koprima Prima dari Grup Bilangan Bulat Modulo

Authors

  • Abdurahim Abdurahim Universitas Mataram http://orcid.org/0009-0001-4263-8833
  • Lia Fitta Pratiwi Universitas Mataram
  • Gusti Yogananda Karang Universitas Mataram
  • I Gede Adhiya Wisnu Wardhana Universitas Mataram
  • Irwansyah Irwansyah Universitas Mataram
  • Zatta Yumni Awanis Badan Riset dan Inovasi Nasional
  • Mamika Ujianita Romdhini Univeritas Mataram

DOI:

https://doi.org/10.21580/square.2024.6.2.22836

Abstract

The Prime Coprime Graph is defined as a graph in which two distinct vertices are adjacent if and only if the greatest common divisor of their orders is 1, indicating that they are coprime. This research focuses on deriving general formulas for the Padmakar-Ivan index and the Szeged index for the coprime prime graph of the modulo integer group with n=p^k, where p is a prime number and k is not less than 2. As a result of this study, explicit formulas for the Padmakar-Ivan and Szeged indices were obtained, along with an analysis of the relationship between these two indices.

Keywords: prime coprime graph, Padmakar-Ivan index, Szeged index.

Downloads

Download data is not yet available.

References

Adhikari, A., & Banerjee, S. (2022). Prime coprime graph of a finite group. Novi Sad Journal of Mathematics, 52(2), 41–59.

Alimon, N. I., Sarmin, N. H., & Erfanian, A. (2020). The Szeged and Wiener indices for coprime graph of dihedral groups. AIP Conference Proceedings, 2266(1).

Alimon, N. I., Sarmin, N. H., & Erfanian, A. (2023). ON THE SZEGED INDEX AND ITS NON-COMMUTING GRAPH. Jurnal Teknologi, 85(3), 105–110.

Banerjee, S. (2023). The Szeged Index of Power Graph of Finite Groups. Research Square, 1–17.

Chithrabhanu, M. S., & Somasundaram, K. (2022). Padmakar-Ivan index of some types of perfect graphs. Discrete Mathematics Letters, 9, 92–99.

Das, K. C., Ashrafi, A. R., & Ghalavand, A. (2020). Comparison between Szeged indices of graphs. Quaestiones Mathematicae, 43(8), 1031–1046.

Gazir S, A., Wardhana, I. G. A. W., Switrayni, N. W., & Aini, Q. (2020). Some Properties of Coprime Graph of Dihedral Group D_2n When n is a Prime Power. Journal of Fundamental Mathematics and Applications (JFMA), 3(1), 34–38.

Ghoffari, L. H., Wardhana, I. G. A. W., & Abdurahim. (2024). Padmakar-Ivan and Randic Indices of Non-Coprime Graph of Modulo Integer Groups. Majalah Ilmiah Matematika Dan Statistika, 24(1), 73–84.

Ghorbani, M., Darafsheh, M. R., & Yousefzadeh, P. (2021). On the Prime Graph of a Finite Group. Miskolc Mathematical Notes, 22(1), 201–210.

Juliana, R., Masriani, M., Wardhana, I. G. A. W., Switrayni, N. W., & Irwansyah, I. (2020). COPRIME GRAPH OF INTEGERS MODULO n GROUP AND ITS SUBGROUPS. Journal of Fundamental Mathematics and Applications (JFMA), 3(1), 15–18.

Ma, X., Wei, H., & Yang, L. (2014). The coprime graph of a group. International Journal of Group Theory, 3(2), 13–23.

Syechah, B. N., Asmarani, E. Y., Syarifudin, A. G., Anggraeni, D. P., & Wardhana, I. G. A. W. W. (2022). Representasi Graf Pangkat Pada Grup Bilangan Bulat Modulo Berorde BilanganPrima. Evolusi: Journal of Mathematics and Sciences, 6(2), 99–104.

Yatin, B. Z., Gayatri, M. R., Wardhana, I. G. A. W., & Prayanti, B. D. A. (2023). Indeks Hyper-Wiener Dan Indeks Padmakar-Ivan Dari Graf Koprima Dari Grup Dihedral. Jurnal Riset Dan Aplikasi Matematika, 07(02), 138–147.

Downloads

Published

2024-10-30

Issue

Section

Articles