Enhancing the productivity of irrigated rice fields in West Nusa Tenggara through utilizing Multilayer Perceptron (MLP) and Self-Organising Maps (SOM)
Keywords:
Multilayer Perceptron, Self-Organizing Map, Davies-Bouldin IndexAbstract
As Indonesia's population grows, ensuring a stable food supply becomes increasingly important. Recent changes in weather patterns have significantly impacted food production, particularly rice farming. In West Nusa Tenggara (NTB), a key area for rice production, maintaining consistent output is crucial. However, varying responses to unpredictable weather have led to significant differences in productivity across NTB's regencies and cities. This study aims to enhance the productivity of irrigated rice fields in NTB by predicting productivity levels for 2023 to 2024 using the best multilayer perceptron (MLP) model. We will compare 5 MLP model architectures to identify the optimal model for the prediction process. We will use the prediction results to cluster areas regionally through the self-organizing map (SOM) algorithm. We used the Davies-Bouldin Index (DBI) to determine the optimal number of clusters. This research compared DBI values for cluster counts of 2, 3, 4, and 5, determining the optimal cluster number by the smallest DBI value. The lowest DBI is 0.391 observed for 3 clusters. From this clustering, Cluster 1 consists of 7 regencies/cities with the lowest productivity level, Cluster 2 contains 1 regency with a moderate productivity level, and Cluster 3 includes 2 regencies/cities with the highest productivity level. The study concludes that the 7 regencies/cities in Cluster 1, identified as having low productivity require greater focus from local governments to optimize land area and paddy yields to enhance productivity in those areas.
Downloads
References
Agustina, N. (2018). Analisis Usahatani dan Fungsi Produksi Padi Sawah di Desa Mukti Jaya Kecamatan Rimba Melintang Kabupaten Rokan Hilir. Universitas Islam Riau. Retrieved Oktober 2023, from https://repository.uir.ac.id/4367/5/BAB%202.pdf
Ardilla, Y. (2016). Metode Hibrida ARIMA dan Multilayer Perceptron untuk Peramalan Jangka Pendek Konsumsi Listrik di Jawa Timur. Sepuluh Nopember Institute of Technology, Surabaya. Retrieved Oktober 2023, from https://repository.its.ac.id/72011/1/9114205301-Master%20thesis.pdf
Badan Pusat Statistik Kabupaten Semarang. (2023, Januari 31). Survei Ubinan Subround I Bulan Januari 2023. Retrieved Agustus 24, 2024, from https://semarangkab.bps.go.id/id/news/2023/01/31/247/survei-ubinan-subround-i-bulan-januari-2023.html
Barat, B. K. (2020). Kabupaten Lombok Barat Dalam Angka 2020. Lombok Barat: BPS Lombok Barat.
BPS. (2022). Tanaman Pangan. Nusa Tenggara Barat, Indonesia. Retrieved Oktober 25, 2023, from https://www.bps.go.id/subject/53/tanaman-pangan.html
Chaerunnisa, A. F., & Fauzan, A. (2023). Peramalan Produktivitas Tanaman Jagung di Provinsi NTB. Seminar Nasional Statistika dan Sains Data (pp. 12-24). Yogyakarta: Institut Pertanian Bogor. Retrieved Oktober 2023
Davies, D. L., & Bouldin, D. W. (1979). A Cluster Separation Measure (Vols. PAMI-1). IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.1979.4766909
Dolyatovskiy, V. A., Dolyatovskiy, L. V., & Gamaley, Y. V. (2020). Forecasting of Need for the Human Capital for Development of Economy. International Scientific Conference "Far East Con". 128, pp. 2349-2357. Advances in Economics, Bussiness and Management Research. doi:10.2991/aebmr.k.200312.325
Dwiyanto, A. (2023). Statistika Deskriptif: Pengertian, Fungsi, dan Jenisnya. Universitas Nusa Putra, Teknik Elektro. Sukabumi: Universitas Nusa Putra. Retrieved Oktober 2023
Fahrezi, D. S., Hadianto, A., & Raswatie, F. D. (2023). Dampak Perubahan Iklim terhadap Produksi Padi di Indonesia. UT - Resources and Environmental Economic. Retrieved from https://repository.ipb.ac.id/handle/123456789/123387
Faiz, M. F., & Fauzan, A. (2023). Implementasi Metode Clustering SOM Dalam menganalisis Alasan Tidak KB di Kabupaten Temanggung. SENADA 2023. 3, pp. 47 - 58. Surabaya: UPN "Veteran" Jawa Timur. Retrieved Oktober 2023
Guthikonda, S. M. (2005). Kohonen Self-Organizing Maps. Wittenberg University.
Hassyddiqy, H., & Hasdiana. (2023, Januari). Analisis Peramalan (Forecasting) Penjualan Dengan Metode ARIMA (Autoregressive Integrated Moving Average) Pada Huebee Indonesia. Data Science Indonesia, 2(2), 92-100. doi:doi.org/10.47709/dsi.v2i2.2022
Hermanianto, A. B., Buono, A., & Akhmad, F. (2017). Optimasi Multi-Layer Perceptron Pada Model Prediksi Karakteristik Musim Hujan Dan Kemarau Di Kabupaten Pacitan. Institut Pertanian Bogor, Bogor. Retrieved Oktober 2023
Hutajulu, C. P., Sugiarto, D., & Solihah, B. (2022). Peramalan Pasokan Beras Dengan Menggunakan Metode Holt-Winter dan Multilayer Perceptron. Journal of Intelligent Informatics, 1(1), 1-6. Retrieved Oktober 2023
Imansyah, N. (2023, Oktober 6). Pemda tak ada opsi beras impor masuk NTB. (A. Lazuardi, Editor) Retrieved Oktober 20, 2023, from ANTARA Kantor Berita Indonesia: https://www.antaranews.com/berita/3760644/pemda-tak-ada-opsi-beras-impor-masuk-ntb
Indarso, A. O., & Pangaribuan, A. (2021, April). Penggunaan Metode Multilayer Perceptron Pada Prediksi Indeks Saham LQ45. Jurnal Informatik IFTK, 17(1), 38 - 47. Retrieved Oktober 2023
Indriyana, M., Pamungkas, S. N., & Humairoh, S. (2022). LUAS PANEN DAN PRODUKSI PADI DI NUSA TENGGARA BARAT 2022. (I. R. Sri, & C. P. Paramitha, Eds.) Mataram: BPS Provinsi Nusa Tenggara Barat. Retrieved Oktober 2023
Kartikasari, M. D. (2021, April). Self-Organizing Map Menggunakan Davies-Bouldin Index dalam Pengelompokan Wilayah Indonesia Berdasarkan Konsumsi Pangan. JAMBURA Journal Of Mathematics, 3(2), 187-196. doi:doi.org/10.34312/jjom.v3i2.10942
Khalid, I., & Hartik, A. (2023, Agustus 29). 577.025 Jiwa di NTB Terdampak Kekeringan akibat El Nino. Retrieved Oktober 20, 2023, from Kompas: https://regional.kompas.com/read/2023/08/29/150846878/577025-jiwa-di-ntb-terdampak-kekeringan-akibat-el-nino?page=all
Lewis, C. D. (1982). Industrial and business forecasting methods.
Liu, Y.-C., Liu, M., & Wang, X.-L. (2012). Application of Self-Organizing Maps in Text Clustering: A Review. doi:10.5772/50618
Marwala, T., & Lagazio, M. (2018). Multi-layer Perceptron and Radial Basis Function for Modeling Interstate Conflict. Handbook of Machine Learning, 2001, 23-42. doi:10.1142/9789813271234_0002
Nasution, A. H., & Prasetyawan, Y. (2008). Perencanaan dan Pengendalian Produksi (1 ed.). Yogyakarta Graha Ilmu. Retrieved Oktober 2023, from http://pustakaaceh.perpusnas.go.id/detail-opac?id=49526
Pardede, D., Hayadi, B. H., & Iskandar. (2022). Kajian Literatur Multil Layer Perceptron Seberapa Baik Performa Algoritma Ini. Journal of ICT Aplication and System , 23-34.
Pei, J., Han, J., & Kamber, M. (2012). Data Mining: Concepts and Techniques Third Edition. United States of America.
Pransuamitra, P. A. (2023, Mei 16). Ketahanan Pangan RI di Bawah Rata-Rata Dunia, Begini Faktanya. Retrieved Oktober 2023, from CNBC Indonesia: https://www.cnbcindonesia.com/research/20230516074542-128-437635/ketahanan-pangan-ri-di-bawah-rata-rata-dunia-begini-faktanya#:~:text=Indeks%20Ketahanan%20Pangan%20Indonesia&text=Namun%2C%20meski%20mengalami%20kenaikan%2C%20ketahanan,lebih%20tinggi%20sebe
Pratama, A. R. (2015). Perbandingan Hasil Pengelompokkan Menggunakan Algoritma K-Means dan Self Organizing Maps. Universitas Islam Indonesia. Retrieved Oktober 2023
Pratiwi, P. G., Putra, I. K., & Putri, D. P. (2019, Agustus). Peramalan Jumlah Tersangka Penyalahgunaan Narkoba Menggunakan Metode Multilayer Perceptron. MERPATI, 7(2), 143 - 150. Retrieved Oktober 2023
Putra, J. W. (2023). Feed Forward Neural Network. Retrieved from Wiragotama: https://wiragotama.github.io/resources/ebook/parts/JWGP-intro-to-ml-chap11-secured.pdf
Putri, M. A. (2021). Perbandingan Metode Multilayer Perceptron dan Extreme Learning Machine dalam Peramalan Saham Nippon Paint. Undergraduate Thesis, Islam University of Indonesia, Yogyakarta. Retrieved Oktober 2023, from https://dspace.uii.ac.id/handle/123456789/37974
Rahayu, B. (2019). PENGELOMPOKKAN DAMPAK BENCANA TANAH LONGSOR DI INDONESIA MENGGUNAKAN KOHONEN SELF ORGANIZING MAPS (SOM). Statistics. Yogyakarta: Universitas Islam Indonesia. Retrieved Oktober 2023, from https://dspace.uii.ac.id/handle/123456789/16023
Rahayu, N. R. (2020). Pengelompokan Wilayah Berdasarkan Produksi Hortikultura Menggunakan Self Organizing Maps (Studi Kasus : Produksi Hortikultura Jawa Tengah Tahun 2020). Islam University of Indonesia, Yogyakarta. Retrieved Oktober 2023
Repository UMS. (n.d.). Retrieved from E Prints UMS: https://eprints.ums.ac.id/71563/4/BAB%20II.pdf
Ruslan, K. (2021). Budidaya Tanaman Padi. In K. Ruslan, Produktivitas Tanaman Pangan dan Hortikultura (p. 14). Jakarta: Center for Indonesian Policy Studies.
Sen, S., Sugiarto, D., & Rochman, A. (2020, Juni). Komparasi Metode Multilayer Perceptron (MLP) dan Long Short Term Memory (LSTM) dalam Peramalan Harga Beras. ULTIMATICS, XII(I), 35-41. Retrieved Oktober 2023
Suyanto. (2013). Soft Computing Membangun Mesin Ber IQ Tinggi. Bandung: Telkom University.
T.Kohonen. (1990). The Self Organizing Map. 78, pp. 1464-1480. Proceedings of the IEEE. Retrieved Oktober 2023
Wibawa, A. P., Widya, L., Utama, A. B., Saputra, I. T., & Izdihar, Z. N. (2020, Desember). Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik . Indonesian Journal of Data Science (IJODAS), 1(3), 57 - 67. Retrieved Oktober 2023
Wibawa, M. S., & Maysanjaya, I. M. (2018). Multilayer Perceptron dan Principal Component Analysis untuk DIagnosa Kanker Payudara. JANAPATI Vol. 7 (1), 90-99.
Yanwardhana, E. (2023, Oktober 10). RI Tambah Impor Beras 1,5 Juta Ton, Ini Alasan Pemerintah. Retrieved Oktober 20, 2023, from CNBC Indonesia: https://www.cnbcindonesia.com/news/20231009202723-4-479214/ri-tambah-impor-beras-15-juta-ton-ini-alasan-pemerintah
Yolandha, F. (2022, Agustus 15). Home > News > UmumSenin 15 Aug 2022 00:43 WIB. Retrieved Oktober 2023, from republika.com: https://news.republika.co.id/berita/rglvf2370/fao-dan-irri-akui-ketahanan-pangan-indonesia-tangguh-saat-dunia-krisis
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Natural Sciences and Mathematics Research
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright
The copyright of the received article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles. Authors are allowed to use their articles for any legal purposes deemed necessary without written permission from the journal, but with an acknowledgment to this journal of initial publication.
Licensing