Current State: The Development of Thin Film Solar Cells Based on Kesteritee Compound

Fianti Fianti*  -  Department of Physics, Semarang State University, Central Java, Indonesia
Badrul Munir  -  Department of Metallurgical Engineering, University of Indonesia, Jakarta, Indonesia
Kyoo Ho Kim  -  Department of Materials Science and Engineering, Yeungnam University, 214-1 Daedong, Gyeongsan, Gyeongbuk 712-749, Korea, Republic of
Mohammad Ikhlasul Amal  -  Indonesian Institut of Sciences (LIPI), South Tangerang, Indonesia

(*) Corresponding Author
Thin film solar cell experience fast development, especially for thin film solar cell CdTe and Cu(In,Ga)Se2 (CIGS). However, the usage of rare element in the nature such as In, Te, and Ga and toxic such as Cd give limitation in the future development and production growth in big scale. Development of other alternative compound with maintain the profit of electronic and optic character which get from CIGS chalcopyrite compound will be explain. Compound of Cu2ZnSnSe4 (CZTSe) is downward compound from CIGS with substitute the In and Ga element with Zn and Sn. The compound kesterite structure can be modified with variation of chalcogen element to get wanted character in solar cell application. Efficiency record of photovoltaic devices conversion used this compound or downward reach 9.7%.©2016 JNSMR UIN Walisongo. All rights reserved.

Keywords: Thin Film; Solar Cell; Kesteritee Coumpond

  1. Solarbuzz Reports World Solar Photo-voltaic Market Grew to 18.2 Gigawatts in 2010, Up 139% Y/Y, http://www.prweb.com, 2011.
  2. J. Zhao, A. Wang, M.A. Green, F. Ferrazza. Novel 19.8% efficient ‘honeycomb’ tex-tured multicrystalline and 24.4% monocrystalline silicon solar cells. Ap-plied Physics Letters 73, 1998, pp.1991–1993.
  3. J.Zhao, A. Wang, F. Yun, G.Zhang, D.M. Roche, S.R. Wenham, M.A. Green. 20,000 PERL silicon cells for the ‘ 1996 World Solar Challenge’ solar car race. Progress in Photovoltaics: Research and Applica-tions. 5, pp. 269–276, 1997.
  4. M. Morooka, K. Noda. Development of dye-sensitized solar cells and next gen-
  5. eration energy devicess, 88th Spring Meeting of The Chemical Society of Japan, Tokyo, 26 March 2008.
  6. http://www.konarka.com (2011)
  7. M.A. Green, J. Zhao, A. Wang and S.R. Wenhan, Progress and outlook for high efficiency crystalline silicon solar cells, Solar Energy Materials and Solar Cells 65, pp. 9–16, 2001.
  8. X. Wu, J.C. Keane, R.G. Dhere, C. DeHart, A. Duda, T.A. Gessert, S. Asher, D.H. Levi, P. Sheldon, 16.5%- efficient CdS/CdTe polycrystalline thin-film solar cell, Pro-ceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26, pp. 995–1000, October 2001.
  9. D. Cunningham, K. Davies, L. Grammond, E. Mopas, N. O’Connor, M. Rubcich, M. Sadeghi, D. Skinner, T. Trumbly. Large area ApolloTM module performance and reliability, Conference Record, 28th IEEE Photovoltaic Specialists Conference, Alas-ka, September, pp.13–18, 2000.
  10. I. Repins, M. Contreras,Y. Romero, Y. Yan, W. Metzger, J.Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B.E McCandless, R. Noufi. Characterization of 19.9%-efficienct CIGS absorbers, 33th IEEE Photovoltaics Specialists Conference Rec-ord, 2008.
  11. http://www.miasole.com, 2011.
  12. S. Chorr, The crystal structure of kesteritee type compounds: A neutron and X-ray diffraction study, Solar Energy Materials & Solar Cells, 95, pp.1482-1488, 2011.
  13. T. Maeda, S. Nakamura, T. Wada, Phase stability and electronic strucutre of In-free photovoltaic semiconductors, Cu2ZnSnSe4 and Cu2ZnSnS4 by first principles calculation, Mater. Res. Soc. Symp. Proc. 1165, pp. M04-03, 2009.
  14. I. Amal, K. Kyoo Ho, Formation of CZTSeS by two step fabrication, in submission, 2011.
  15. R.A. Wibowo, W.S. Kim, E.S. Lee, B. Munir, K.H. Kim, Single Step preparation of quartenary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binarychalcogenide targets, Journal of Physics and Chemistry of Solids 68, pp.1908-1913, 2007.
  16. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi and T. Yokota, Prepa-ration and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, Sol. Energy Mater. Sol. Cells 49, pp. 407–414, 1997.
  17. Th.M. Friedlmeier, N. Wieser, Th. Walter, H. Dittrich, H.-W. Schock, Heterojunctions based on Cu2ZnSnS4 and Cu2ZnSnSe4 thin films, in: Proceed-ings of the 14th European Photovoltaic Solar Energy Conference, pp. 1242–1245, 1997.
  18. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito and T. Motohiro, Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique, Appl. Phys. Express 1, pp. 41201, 2008.
  19. G. Zoppi, I. Forbes, R.W. Miles, P.J. Dale, J.J. Scragg and L.M. Peter, Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors, Prog. Photovolt.: Res. Appl. 17, pp. 315–319, 2009.
  20. D.B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesteritee solar cell, Sol. Energy Mater. Sol. Cells. 95, pp. 1421–1436, 2011.
  21. H. Katagiri, K. Saitoh, T. Washio, H. Shi-nohara, T. Kurumadani and S. Miyajima, Development of thin film solar cell based on Cu2ZnSnS4 thin films, Sol. Energy Ma-ter. Sol. Cells 65, pp. 141–148, 2001.
  22. H. Katagiri, K. Jimbo, K. Monya, K. Tsuchida, Solar cell without environ-mental pollution by using CZTS thin film, in: Proceedings of the World Conference on Photvoltaics Energy Conversion III, pp. 2874–2879, 2003.
  23. K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi and H. Katagiri, Cu2ZnSnS4-type thin film so-
  24. lar cells using abundant materials, Thin Solid Films 515, pp. 5997–5999, 2007.
  25. K. Moriya, K. Tanaka and H. Uchiki, Cu2ZnSnS4 thin films annealed in H2S atmosphere for solar cell absorber pre-pared by pulsed laser deposition, Jpn. J. Appl. Phys. 47, pp. 602–604, 2008.
  26. J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi and I. Forbes, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material, Phys. Status Solidi B 245, pp. 1772–1778, 2008.
  27. G. Zoppi, I. Forbes, R.W. Miles, P.J. Dale, J.J. Scragg and L.M. Peter, Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors, Prog. Photovolt.: Res. Appl. 17, pp. 315–319, 2009.
  28. A. Weber, H. Krauth, S. Perlt, B. Schubert, I. Kötschau, S. Schorr and H.W. Schock, Multi-stage evaporation of Cu2ZnSnS4 thin films, Thin Solid Films 517, pp. 2524–2526, 2009.
  29. H. Araki, Y. Kubo, A. Mikaduki, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi and A. Takeuchi, Preparation of Cu2ZnSnS4 thin films by sulfurizing elec-troplated precursors, Sol. Energy Mater. Sol. Cells 93, pp. 996–999, 2009.
  30. H. Araki, Y. Kubo, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi and A. Takeuchi, Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu–Zn–Sn precursors, Phys. Status Solidi C 6, pp. 1266–1268, 2009.
  31. A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze and A. Kirbs, Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective, Thin Solid Films 517, pp. 2511–2514, 2009.
  32. K. Tanaka, M. Oonuki, N. Moritake and H. Uchiki, Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing, Sol.

Open Access Copyright (c) 2017 Journal of Natural Sciences and Mathematics Research
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Natural Sciences and Mathematics Research
Published by Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang

Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/JNSMR
Email:jnsmr@walisongo.ac.id

ISSN: 2614-6487 (Print)
ISSN: 2460-4453 (Online)

View My Stats

Lisensi Creative Commons

This work is licensed under a Creative Commons Lisensi Creative Commons .

apps