Effect of Bekatewak Flour on Fasting Blood Glucose Levels (Study on Type 2 Diabetes Mellitus Rats Fed a High-Fat Diet)
Main Article Content
Abstract
High-fat diet (HFD) causes oxidative stress, which is a trigger for insulin resistance in type 2 diabetes mellitus. The provision of foods rich in antioxidants, such as rice bran, tempeh, and Javanese ginger, is needed to reduce oxidative stress. This study aimed to determine the effect of giving Bekatewak (a combination of rice bran, tempeh, and Javanese ginger) flour on fasting blood glucose levels of type 2 diabetes mellitus rats induced by HFD. This study was true experimental research using a pre- and post-test randomized controlled group design with a total of 18 rats as samples. There were three groups: the negative control group (K-), the positive control group (K+), and the treatment group (P). The study results showed a significant difference in fasting blood glucose levels before and after the administration of Bekatewak flour at a dose of 540 mg/200 g/bodyweight (p<0.05). There were significant differences in fasting blood glucose levels after intervention between K- and K+, K- and P, and K+ and P groups (p<0.001). Bekatewak flour has the potential to be developed as a functional food based on natural antioxidants to help control blood glucose levels and prevent insulin resistance caused by a high-fat diet.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
By submitting an article to the journal, the author(s) agree to transfer the published article's copyright to the journal, which will act as the publisher. This means the journal will have the right to publish the article in various forms, including reprints. The journal will maintain the publishing rights to the published articles.
This work is licensed under a Creative Commons Attribution 4.0 International License.
In line with the license, authors and any users (readers and other researchers) are allowed to 1) Share — copy and redistribute the material in any medium or format for any purpose, even commercially, 2) Adapt — remix, transform, and build upon the material for any purpose, even commercially. The author, as licensor, cannot revoke these freedoms as long as the user follows the license terms.
Under the following terms: 1) Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. 2) No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
References
Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose Tissue and Insulin Resistance in Obese. Biomedicine & Pharmacotherapy, 137. https://doi.org/10.1016/j.biopha.2021.111315
Amanat, S., Ashkar, F., Eftekhari, M. H., Tanideh, N., Doaei, S., Gholamalizadeh, M., Koohpeyma, F., & Mokhtari, M. (2021). The Effect of Genistein on Insulin Resistance, Inflammatory Factors, Lipid Profile, and Histopathologic Indices in Rats with Polycystic Ovary Syndrome. Clinical and Experimental Reproductive Medicine, 48(3), 236–244. https://doi.org/10.5653/cerm.2020.04231
Astawan, M. (2019). Pengaruh Konsumsi Tempe dari Kedelai Germinasi dan Non-Germinasi Terhadap Profil Darah Tikus Diabetes. Jurnal Pangan, 28(2), 135–144. https://doi.org/10.33964/jp.v28i2.439
Bintanah, S., & Mufnaetty, M. (2021). Formula Tepung Petul untuk Memperbaiki Status Gizi dan Kolesterol Total pada Wanita Menopause Hiperkolesterolemia. Jurnal Gizi, 10, 38. https://doi.org/10.26714/jg.10.1.2021.38-50
Bintari, S. H., Putriningtyas, N. D., Nugraheni, K., Widyastiti, N. S., Dharmana, E., & Johan, A. (2015). Comparative effect of Tempe and soymilk on fasting blood glucose, insulin level and pancreatic beta cell expression (Study on streptozotocin-lnduced diabetic rats). Pakistan Journal of Nutrition, 14, 239–246. https://doi.org/10.3923/pjn.2015.239.246
Dewi, L., Lestari, L. A., Astiningrum, A. N., Fadhilah, V., & Amala, N. (2020). The Alleviation Effect of Combination of Tempeh and Red Ginger Flour towards Insulin Sensitivity in High-Fat Diet Rats. Journal of Food and Nutrition Research, 8(1), 21–25. https://doi.org/10.12691/jfnr-8-1-3
Henderson, A. J., Ollila, C. A., Kumar, A., Borresen, E. C., Raina, K., Agarwal, R., & Ryan, E. P. (2012). Chemopreventive properties of dietary rice bran: Current status and future prospects. In Advances in Nutrition (Vol. 3, pp. 643–653). https://doi.org/10.3945/an.112.002303
International Diabetes Federation. (2025). In https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/ (Vol. 11).
Jain, R., Bolch, C., Al-Nakkash, L., & Sweazea, K. L. (2022). Systematic review of the impact of genistein on diabetes-related outcomes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 323(3), R279–R288. https://doi.org/10.1152/ajpregu.00236.2021
Jiang, S., Liu, H., & Li, C. (2021). Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods, 10(8), 1854. https://doi.org/10.3390/foods10081854
Jung, J. Y., Lim, Y., Moon, M. S., Kim, J. Y., & Kwon, O. (2011). Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats. Nutrition & Metabolism, 8, 18. https://doi.org/10.1186/1743-7075-8-18
Kanwugu, O. N., Glukhareva, T. V., Danilova, I. G., & Kovaleva, E. G. (2022). Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Critical Reviews in Food Science and Nutrition, 62(18), 5005–5028. https://doi.org/10.1080/10408398.2021.1881434
Kesh, S. B., Sarkar, D., & Manna, K. (2015). High-fat diet-induced oxidative stress and its impact on metabolic syndrome: A review. Https://Www.Researchgate.Net/Publication/291699222_High-Fat_diet-Induced_oxidative_stress_and_its_impact_on_metabolic_syndrome_A_review, 9(1), 47–52.
Kim, M.-B., Kim, C., Song, Y., & Hwang, J.-K. (2014). Antihyperglycemic and Anti‐Inflammatory Effects of Standardized Curcuma xanthorrhiza Roxb. Extract and Its Active Compound Xanthorrhizol in High‐Fat Diet‐Induced Obese Mice. Evidence-Based Complementary and Alternative Medicine, 2014(1). https://doi.org/10.1155/2014/205915
Kozuka, C., Sunagawa, S., Ueda, R., Higa, M., Tanaka, H., Shimizu-Okabe, C., Ishiuchi, S., Takayama, C., Matsushita, M., Tsutsui, M., Miyazaki, J., Oyadomari, S., Shimabukuro, M., & Masuzaki, H. (2015). γ-Oryzanol Protects Pancreatic β-Cells Against Endoplasmic Reticulum Stress in Male Mice. Endocrinology, 156(4), 1242–1250. https://doi.org/10.1210/en.2014-1748
Li, H., Ren, J., Li, Y., Wu, Q., & Wei, J. (2023). Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1134025
Ma, M., Liu, H., Yu, J., He, S., Li, P., Ma, C., Zhang, H., Xu, L., Ping, F., Li, W., Sun, Q., & Li, Y. (2020). Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids in Health and Disease, 19(1), 121. https://doi.org/10.1186/s12944-020-01303-w
Marton, L. T., Pescinini-E-Salzedas, L. M., Camargo, M. E. C., Barbalho, S. M., Haber, J. F. D. S., Sinatora, R. V., Detregiachi, C. R. P., Girio, R. J. S., Buchaim, D. V., & Cincotto Dos Santos Bueno, P. (2021). The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Frontiers in Endocrinology, 12. https://doi.org/10.3389/fendo.2021.669448
Montgomery, M. K., Hallahan, N. L., Brown, S. H., Liu, M., Mitchell, T. W., Cooney, G. J., & Turner, N. (2013). Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia, 56(5), 1129–1139. https://doi.org/10.1007/s00125-013-2846-8
Naufalina, M. D., & Nuryanto, N. (2014). Pengaruh Pemberian Susu Kacang Koro Pedang (Canavalia ensiformis) Terhadap Kadar Kolesterol LDL dan HDL Pada Tikus Dslipidemia. Journal of Nutrition College, 3(4), 456–464. https://doi.org/10.14710/jnc.v3i4.6827
Nianogo, R. A., & Arah, O. A. (2022). Forecasting Obesity and Type 2 Diabetes Incidence and Burden: The ViLA-Obesity Simulation Model. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.818816
Nurrohima, D., Wasita, B., & Susilawati, T. N. (2022). Antidiabetic Effects of Red Rice Bran in The Rat Models of Diabetes. Jurnal Aisyah : Jurnal Ilmu Kesehatan, 7(2). https://doi.org/10.30604/jika.v7i2.984
Novita, R., Sehatman, S. (2019). The study of glucose and high-fat diet administration on male Sprague Dawley rats. AIP Conference Proceedings, 2108, 020021. https://doi.org/10.1063/1.5109996
Parklak, W., Munkong, N., Somnuk, S., Somparn, N., Naowaboot, J., Yoysungnoen, B., & Lerdvuthisopon, N. (2017). Rice bran water extract attenuates pancreatic abnormalities in high-fat diet-induced obese rats. Tropical Journal of Pharmaceutical Research, 16(4), 819. https://doi.org/10.4314/tjpr.v16i4.11
Prasetyastuti, & Ghozali, D. S. (2021, February). The Effects of Soyferment-Tempeh on Lipid Profileand Expression of Retinol binding protein 4 (RBP4)and Phosphoenolpyruvate Carboxykinase (PEPCK) Genes in Type 2 Diabetic Mice. Https://Jurnal.Ugm.Ac.Id/v3/IJP/Article/View/1354/592.
Rahmawati, R. D., & Kusumastuti, A. C. (2015). Pengaruh Pemberian Sari Buah Belimbing Wuluh (Averrhoa Bilimbi L.) terhadap Kadar Glukosa Darah Tikus Sprague Dawley. Journal of Nutrition College, 4(4), 486–491. https://doi.org/10.14710/jnc.v4i4.10152
Rahmayani, I., Ambarsari, L., & Safithri, M. (2015). Antihyperglicemic activity of Curcuma xanthorrizha Roxb. Nanocurcuminoid emulsion on Streptozotocin induced sprague-dawley rat. Current Biochemistry, 3(2), 66–79. http://biokimia.ipb.ac.id
Rosidi, A., Khomsan, A., Setiawan, B., Riyadi, H., & Briawan, D. (2014). Potensi temulawak (curcuma xanthorrhiza roxb) sebagai antioksidan. Https://Jurnal.Unimus.Ac.Id/Index.Php/Psn12012010/Article/View/1219.
Sapwarobol, S., Saphyakhajorn, W., & Astina, J. (2021). Biological functions and activities of rice bran as a functional ingredient: a review. Nutrition and Metabolic Insights, 14. https://doi.org/10.1177/11786388211058559
Silva, C. R., Oliveira, J. E. D. de, Souza, R. A. H. G. de, & Silva, H. C. (2005, March). Effect of a rice bran fiber diet on serum glucose levels of diabetic patients in Brazil. Https://Ve.Scielo.Org/Scielo.Php?Script=sci_arttext&pid=S0004-06222005000100003.
Soelistijo, S. A., Suastika, K., Lindarto, D., Decroli, E., Permana, H., Sucipto, K. W., Kusnadi, Y., Budiman, Ikhsan, M. R., Sasiarini, L., Sanusi, H., HS, H. N., & Susanto, H. (2021). Pedoman pengelolaan dan pencegahan diabetes melitus tipe 2 dewasa di Indonesia 2021 (1st ed.). PB Perkeni.
Soviana, E., & Maenasari, D. (2019). ASUPAN SERAT, BEBAN GLIKEMIK DAN KADAR GLUKOSA DARAH PADA PASIEN DIABETES MELITUS TIPE 2. Jurnal Kesehatan, 12(1), 19–29. https://doi.org/10.23917/jk.v12i1.8936
Subiyono, Martsiningsih, M. A., & Gabrela, D. (2016, March). Gambaran Kadar Glukosa Darah Metode GOD-PAP (Glucose Oxsidase-Peroxidase Aminoantypirin) Sampel Serum dan Plasma EDTA (Ethylen Diamin Terta Acetat).
Tangvarasittichai, S. (2015). Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes, 6(3), 456. https://doi.org/10.4239/wjd.v6.i3.456
van der Schaft, N., Schoufour, J. D., Nano, J., Kiefte-de Jong, J. C., Muka, T., Sijbrands, E. J. G., Ikram, M. A., Franco, O. H., & Voortman, T. (2019). Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: the Rotterdam Study. European Journal of Epidemiology, 34(9), 853–861. https://doi.org/10.1007/s10654-019-00548-9
Wicaksono, H., Prasetyastuti, P., Hastuti, P., & Sadewa, A. H. (2021). The effect of fermented tempeh aerobic anaerobic (FETAA) on pancreatic duodenal homeobox 1 (Pdx1) gene expression and HOMA-beta index in diabetic mice. Acta Biochimica Indonesiana, 11. https://doi.org/10.32889/actabioina.11
Xia, Z.-H., Chen, W.-B., Shi, L., Jiang, X., Li, K., Wang, Y.-X., & Liu, Y.-Q. (2020). The Underlying Mechanisms of Curcumin Inhibition of Hyperglycemia and Hyperlipidemia in Rats Fed a High-Fat Diet Combined With STZ Treatment. Molecules, 25(2), 271. https://doi.org/10.3390/molecules25020271
