Pengaruh Pemberian Diet Rendah Protein dan Restriksi Pakan pada Pertumbuhan dan Protein Serum Tikus Lepas Sapih

Mulya Agustina*  -  Program Studi Ilmu Gizi Sekolah Pascasarjana IPB University, Indonesia
Rimbawan Rimbawan  -  Program Studi Ilmu Gizi Sekolah Pascasarjana IPB University, Indonesia
Budi Setiawan  -  Program Studi Ilmu Gizi Sekolah Pascasarjana IPB University, Indonesia
Ainia Herminiati  -  Pusat Penelitian Teknologi Tepat Guna LIPI, Indonesia

(*) Corresponding Author

This study aimed to determine the effect of low protein diet and feed restriction on growth and serum protein. This experimental study using randomized controlled group design. Twelve male Sprague dawley (21-28 days old) weighing 50-100 grams were divided into three groups (4 rats/group): normal control, low protein diet and feed restriction group. The data analyzed by ANOVA test followed by Post Hoc Duncan. The determination of total protein using spectrophotometric biuret method and albumin was BCG method. The result showed that low protein diet 5% for 21 days occured weight loss (-5.25 ± 3.3 g), an enlarged liver-to-body weight ratio (4,95%), blood serum albumin (3.22 ± 0.33 g/dl) and total protein (4.61 ± 1.21 g/dl). Feed restriction at level of 30%, 50%, and 60% consecutively for 30 days occured weight loss (-4.75 ± 2.63 g), an enlarged liver-to-body weight ratio (5.18%), and there was a rat that have edema which indicates undernourished condition. Therefore, both diet intervention was able to bring rats into undernourished condition but intervention.


Penelitian ini bertujuan untuk mengetahui pengaruh pemberian diet rendah protein dan restriksi pakan terhadap albumin dan total protein serum. Penelitian eksperimental ini menggunakan desain randomized controlled group design dan rancangan acak kelompok (RAK). Dua belas tikus jantan Sprague dawley umur 21-28 hari dengan berat badan 50-100 gram dibagi menjadi tiga kelompok (4 tiap kelompok) yang terdiri dari satu kelompok kontrol normal dan dua kelompok perlakuan. Pengukuran total protein dilakukan menggunakan metode biuret, spektrofotometri dan pengukuran kadar albumin dengan metode BCG. Analisis data menggunakan ANOVA dan uji lanjut Duncan. Hasil penelitian menunjukkan pemberian diet rendah protein 5% selama 21 hari mengalami penurunan berat badan (-5,25±3,3 g), pembesaran rasio berat organ hati terhadap berat badan (4,95%), kadar albumin (3,22±0,33 g/dl) dan total protein (4,61±1,21 g/dl) serum di bawah normal. Pada restriksi pakan yakni 30%, 50% dan 60% secara berturut-turut selama 30 hari terjadi penurunan berat badan (-4,75±2,63 g), pembesaran rasio berat organ hati terhadap berat badan (5,18%), serta adanya tikus yang mengalami edema dan menandakan kondisi kurang gizi. Kedua perlakuan diet dapat digunakan untuk membuat kondisi tikus kurang gizi.


 

Keywords: serum albumin; low protein; feed restriction; undernourished rats; albumin serum; rendah protein; restriksi pakan; tikus kurang gizi

  1. Acosta-Rodríguez, V.A. et al. (2017) ‘Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system’, Cell Metabolism, 26(1), pp. 267-277.e2. Available at: https://doi.org/10.1016/j.cmet.2017.06.007.
  2. Akpoué, N.A. et al. (2018) ‘Efficiency of balanced and fortified diet on growth and values of serum parameters in young rat protein deficiency’, International Journal of Current Research, 10(9), pp. 73545–73551. Available at: https://doi.org/https://doi.org/10.24941/ijcr.32057.09.2018.
  3. Amir, N. et al. (2015) ‘Pengaruh sipermetrin pada jambal roti terhadap kadar ureum dan kreatinin tikus wistar ( Rattus norvegicus )’, Jurnal IPTEKS PSP, 2(3), pp. 283–293.
  4. Anggraeny, 0 et al. (2016) ‘Korelasi pemberian diet rendah protein terhadap status protein, imunitas, hemoglobin, dan nafsu makan tikus Wistar jantan’, Indonesian Journal of Human Nutrition, 3(2), pp. 105–122. Available at: https://doi.org/10.21776/ub.ijhn.2016.003.Suplemen.5.
  5. Arsenault, J.E. dan Brown, K.H. (2017) ‘Effects of protein or amino-acid supplementation on the physical growth of young children in low-income countries’, Nutrition Reviews, 75(9), pp. 699–717. Available at: https://doi.org/10.1093/nutrit/nux027.
  6. Babji, A.S. et al. (2010) ‘Protein quality of selected edible animal and plant protein sources using rat bio-assay’, International Food Research Journal, 17(2), pp. 303–308.
  7. Bharadwaj, S. et al. (2016) ‘Malnutrition: Laboratory markers vs nutritional assessment’, Gastroenterology Report, 4(4), pp. 272–280. Available at: https://doi.org/10.1093/gastro/gow013.
  8. Boldt, J. (2010) ‘Use of albumin: An update’, British Journal of Anaesthesia, 104(3), pp. 276–284. Available at: https://doi.org/10.1093/bja/aep393.
  9. Buzanovskii, V.A. (2017) ‘Determination of proteins in blood. Part 1: Determination of total protein and albumin’, Review Journal of Chemistry, 7(1), pp. 79–124. Available at: https://doi.org/10.1134/s2079978017010010.
  10. Caraceni, P., Tufoni, M., Bonavita, M.E. (2013) ‘Clinical use of albumin’, Blood Transfusion, 11(4), pp. 18–25. Available at: https://doi.org/10.2450/2013.005s.
  11. Chelsia, Tt, A.A., Armyanti, I. (2017) ‘Efek kekurangan energi protein terhadap berat badan dan berat usus halus tikus sprague-dawley’, CDK-257, 44(10), pp. 685–689.
  12. Conde, M. et al. (1993) ‘Liver changes in protein malnutrition. An experimental study in rats’, Nutr. Hosp, 8(6), pp. 358–363.
  13. Coulthard, M.G. (2015) ‘Oedema in kwashiorkor is caused by hypoalbuminaemia’, Paediatrics and International Child Health, 35(2), pp. 83–89. Available at: https://doi.org/10.1179/2046905514Y.0000000154.
  14. Diana, F.M. (2009) ‘Fungsi dan metabolisme protein dalam tubuh manusia’, Jurnal Kesehatan Masyarakat, 4(1), pp. 47–52. Available at: https://doi.org/10.1098/rspb.2000.0961.
  15. Ernest, A.K. et al. (2017) ‘Effects of protein-energy restriction on the nutritional status of growing rats’, International Journal of Development Research, 7(2), pp. 11449–11453.
  16. Giknis, ML.A., Clifford, C. (2008) Clinical Laboratory Parameters For Crl : WI ( Han ) Rats, Charles River Laboratories. Charles River Laboratories.
  17. Herminiati, A. et al. (2014) ‘The effect of calcium deficient intake for premenopausal age rat model’, International Journal of Sciences: Basic and Applied Research, 17(2), pp. 363–373.
  18. Jahng, J.W. et al. (2007) ‘Chronic food restriction in young rats results in depression- and anxiety-like behaviors with decreased expression of serotonin reuptake transporter’, Brain Research, 1150(1), pp. 100–107. Available at: https://doi.org/10.1016/j.brainres.2007.02.080.
  19. Janvier Labs (2013) Sprague Dawley Rat. Janvier. Available at: https://www.janvierlabs.com/rodent-research-models-services/research-models/per-species/outbredrats/product/sprague-dawley.html.
  20. Kasanen, I.H.E. et al. (2009) ‘A novel dietary restriction method for group-housed rats: Weight gain and clinical chemistry characterization’, Laboratory Animals, 43(2), pp. 138–148. Available at: https://doi.org/10.1258/la.2008.008023.
  21. Keller, U. (2019) ‘Nutritional laboratory markers in malnutrition’, Journal of Clinical Medicine, 8(6), p. 775. Available at: https://doi.org/10.3390/jcm8060775.
  22. Kelly, P. (2011) ‘Undernutrition’, in Nutrition and Metabolism: Second Edition, pp. 378–386. Available at: https://doi.org/10.1002/9781444327779.ch17.
  23. Kementrian Kesehatan RI (2018) Hasil Utama Laporan Riskesdas 2018, Badan Penelitian dan Pengembangan Kesehatan Departemen Kesehatan Republik Indonesia. Jakarta (ID). Available at: https://doi.org/1 Desember 2013.
  24. Khan, A. et al. (2017) ‘Health complication caused by protein deficiency.’, Journal of Food Science and Nutrition, 01(01), pp. 2–3. Available at: https://doi.org/10.35841/food-science.1000101.
  25. Khan, A. et al. (2018) ‘Nutritional complications and its effects on human health.’, Journal of Food Science and Nutrition, 01(01), pp. 17–20. Available at: https://doi.org/10.35841/food-science.1.1.17-20.
  26. Khasanah, Y. et al. (2015) ‘In vivo study on albumin and total protein in white rat (rattus norvegicus) after feeding of enteral formula from tempe and local food’, Procedia Food Science, 3, pp. 274–279. Available at: https://doi.org/10.1016/j.profoo.2015.01.030.
  27. Leite, S.N. et al. (2011) ‘Experimental models of malnutrition and its effect on skin trophism.’, Anais Brasileiros de Dermatologia, 86(4), pp. 681–688. Available at: https://doi.org/10.1590/S0365-05962011000400009.
  28. Martinez, R.G. et al. (2013) ‘Albumin: Pathophysiologic basis of its role in the treatment of cirrhosis and its complications’, Hepatology, 58(5), pp. 1836–1846. Available at: https://doi.org/10.1002/hep.26338.
  29. Mejía-Naranjo, W., Sánchez-Gomez, M. (2004) ‘Protein malnutrition up-regulates growth hormone receptor expression in rat splenic B lymphocytes.’, Biomédica : revista del Instituto Nacional de Salud, 24(4), pp. 403–412. Available at: https://doi.org/10.7705/biomedica.v24i4.1290.
  30. Nadila, F. et al. (2016) ‘Manajemen anak gizi buruk tipe marasmus dengan TB Paru’, Jurnal Medula Unila, 6(1), pp. 36–43.
  31. Nurwati (2018) Pemberian ransum tempe dalam meningkatkan status antioksidan dan memperbaiki profil sel Beta pankreas tikus diabetes melitus. IPB University.
  32. Olofin, I. et al. (2013) ‘Associations of suboptimal growth with all-cause and cause-specific mortality in children under five years: A pooled analysis of ten prospective studies’, PLoS ONE, 8(5). Available at: https://doi.org/10.1371/journal.pone.0064636.
  33. Ridwan, E. (2013) ‘Ethical use of animals in medical research’, J Indon Med Assoc, 63(3), pp. 112–116.
  34. Sulistyowati, E., Julia, A.R., Mudita, D. (2015) ‘Pemberian tepung daun kelor terhadap kadar transferin darah tikus putih model KEP’, Indones J Hum Nutr, 2(2), pp. 108–116.
  35. Ünsal, H., Çötelioglu, Ü. (2007) ‘The effects of food restriction on some biochemical parameters and certain bacterial groups in the cecum in Sprague Dawley rats’, Microbial Ecology in Health and Disease, 19(1), pp. 17–24. Available at: https://doi.org/10.1080/08910600701223942.
  36. Ventiyaningsih, A., Hernowati, T., Sujuti, H. (2011) ‘Serbuk daun kelor menurunkan derajat perlemakan hati dan Ekspresi interleukin-6 hati tikus dengan kurang energi protein’, Jurnal Kedokteran Brawijaya, 26(3), pp. 125–130.
  37. Westerterp-Plantenga, M.S. et al. (2006) ‘Dietary protein, metabolism, and body-weight regulation: Dose-response effects’, International Journal of Obesity, 30(SUPPL. 3), pp. 16–23. Available at: https://doi.org/10.1038/sj.ijo.0803487.
  38. Wu, G. (2016) ‘Dietary protein intake and human health’, Food and Function, 7(3), pp. 1251–1265. Available at: https://doi.org/10.1039/c5fo01530h.
  39. Yapi, Y.M., Zongo, D., Iritie, B.M. (2013) ‘Effet d’une réduction simultanée des taux de fibres et de protéines brutes de la ration sur la santé et la croissance de l’aulacode’, International Journal of Biological and Chemical Sciences, 7(6), pp. 2264–2274. Available at: https://doi.org/10.4314/ijbcs.v7i6.7.
  40. Zutphen, T. Van, et al. (2016) ‘Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction’, Journal of Hepatology, 65(6), pp. 1198–1208. Available at: https://doi.org/10.1016/j.jhep.2016.05.046.

Open Access Copyright (c) 2021 Nutri-Sains: Jurnal Gizi, Pangan dan Aplikasinya
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publisher
Program Studi Gizi Fakultas Psikologi dan Kesehatan (FPK)
Universitas Islam Negeri Walisongo Semarang
Jl. Prof. Hamka KM.2, Semarang, Central Java, Indonesia
Email: nutrisains@walisongo.ac.id

 

apps