Efektivitas Penyerapan Kalsium pada Model Tikus Kurang Gizi yang Diberi Diet Berbasis Mocaf Diperkaya Inulin

Ilmi Dewi Astuti*    -  Program Studi Gizi, STIKes Banyuwangi, Indonesia
Rimbawan Rimbawan    -  Community Nutrition Department, IPB University, Indonesia
Budi Setiawan  -  Community Nutrition Department, IPB University, Indonesia
Ainia Herminiati  -  Pusat Riset Teknologi Tepat Guna, Badan Riset dan Inovasi Nasional, Indonesia

(*) Corresponding Author

Abstract

This study aims to determine the calcium balance in undernourished rats fed with inulin-enriched MOCAF-based diet. Twenty-seven Sprague Dawley male rats at post-weaning age were classified into 1 normal control groups and 8 undernourished groups. The undernourished rats were conditioned for one month then followed by intervention with MOCAF-based diet for another one month. Calcium analysis was performed on the urine, feces, and tibial bones of rats.  Data of calcium were processed using One Way Anova test followed by Post Hoc Duncan to determine mean differences between groups. The results showed that calcium absorption, calcium retention, and calcium bioavailability between groups differed significantly (p<0.05). The highest calcium absorption and calcium retention were found in the protein-energy-deficient rats fed Manggu MOCAF with inulin (KEP M2 = 97.47 ± 0.39% and 97.4 ± 0.4%) respectively. Bioavailability of calcium was higher in the group of undernourished rats fed with MOCAF-based diet. The highest level of calcium of the tibia was found in the protein-deficient rats fed Mentega MOCAF with inulin (KP T2 = 41.1 ± 3.59%) and was significantly different (p<0.05) from the protein-energy-deficient rats fed Manggu MOCAF without inulin group (KEP M1= 25.7 ± 6.71%). This study concluded that inulin-enriched MOCAF-based diet could improve the calcium balance in undernourished rats. 

 

Abstrak

Penelitian ini bertujuan untuk mengetahui pengaruh pemberian diet berbasis MOCAF diperkaya inulin terhadap efektivitas penyerapan kalsium pada model tikus kurang gizi. Sebanyak 27 tikus jantan galur Sprague Dawley usia lepas masa sapih dikelompokkan menjadi 9 kelompok, yaitu 1 kelompok kontrol normal dan 8 kelompok tikus kurang gizi. Pembuatan model tikus kurang gizi selama satu bulan dan dilanjutkan intervensi dengan diet berbasis MOCAF selama satu bulan. Analisis kalsium dilakukan pada urin, feses, dan tulang tibia tikus. Data kalsium diolah menggunakan ANOVA dilanjutkan dengan Post Hoc Duncan. Hasil penelitian menunjukkan daya serap kalsium, retensi kalsium dan bioavailabilitas kalsium antar kelompok berbeda secara signifikan (p<0,05). Daya serap dan retensi kalsium tertinggi terdapat pada kelompok tikus kurang energi protein yang diberi diet MOCAF manggu dengan inulin (KEP M2 = 97,47 ± 0,39% dan 97,4 ± 0,4%). Bioavailabilitas kalsium lebih tinggi pada kelompok tikus kurang gizi yang diberi diet berbasis MOCAF. Kadar kalsium tulang tibia paling tinggi terdapat pada kelompok tikus kurang protein yang diberi diet MOCAF mentega dengan inulin (KP T2= 41,1 ± 3,59 %) dan berbeda signifikan dengan kelompok tikus kurang energi protein yang diberi diet MOCAF Manggu tanpa inulin (KEP M1=25,7 ± 6,71 %). Disimpulkan bahwa diet berbasis MOCAF dengan inulin dapat membantu penyerapan kalsium pada tikus kurang gizi.

Keywords: calcium; inulin; MOCAF; undernourished rats; kalsium; Inulin; MOCAF; tikus kurang gizi

  1. Afifah, N. and Ratnawati, L. (2017) ‘Quality assessment of dry noodles made from blend of mocaf flour, rice flour and corn flour’, IOP Conference Series: Earth and Environmental Science, 101(1), pp. 1–10. doi: 10.1088/1755-1315/101/1/012021.
  2. Asyaifullah, K et al. (2015) Bioavailabilitas mineral kalsium dari tepung tempe dan tepung kedelai rebus pada tikus percobaan khalid asyaifullah. Instittut Pertanian Bogor
  3. BSN (2005) ‘SNI 01-07111.1-2005 Makanan Pendamping Air Susu Ibu (MP-ASI)-Bagian 1 : Bubur Instan’, Standar Nasional Indonesia, pp. 1–14.
  4. Bueno, A. L. and Czepielewski, M. A. (2008) ‘A importância do consumo dietético de cálcio e vitamina D no crescimento’, Jornal de Pediatria, 84(5), pp. 386–394. doi: 10.2223/JPED.1816.
  5. Cashman, Shirley Kennefick, K. D. (2000) ‘Investigation of an in vitro model for predicting the effect of food components on calcium availability from meals’, International Journal of Food Sciences and Nutrition, 51(1), pp. 45–54. doi: 10.1080/096374800100895.
  6. Chemits, T. A. of O. A. (2005) Official Methods of Analysis. Edited by W. Horwitz. Maryland: AOAC International.
  7. Coudray, C. et al. (2005) ‘Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes: Short- and long-term balance studies’, European Journal of Nutrition, 44(5), pp. 293–302. doi: 10.1007/s00394-004-0526-7.
  8. Coxam, V. (2005) ‘Inulin-type fructans and bone health: state of the art and perspectives in the management of osteoporosis’, British Journal of Nutrition. Cambridge University Press (CUP), 93(S1), pp. S111–S123. doi: 10.1079/bjn20041341.
  9. Demigné, C. et al. (2008) ‘Comparison of native or reformulated chicory fructans, or non-purified chicory, on rat cecal fermentation and mineral metabolism’, European Journal of Nutrition, 47(7), pp. 366–374. doi: 10.1007/s00394-008-0736-5.
  10. Dendougui, F. and Schwedt, G. (2004) ‘In vitro analysis of binding capacities of calcium to phytic acid in different food samples’, European Food Research and Technology, 219(4), pp. 409–415. doi: 10.1007/s00217-004-0912-7.
  11. Fairweather-Tait, S. and Hurrell, R. F. (1996) ‘Bioavailability of Minerals and Trace Elements’, Nutrition Research Reviews, 9(1), pp. 295–324. doi: 10.1079/NRR19960016.
  12. Fathoni, A., Hartati, N. S. and Mayasti, N. K. I. (2016) ‘Minimalisasi Penurunan Kadar Beta-Karoten dan Protein dalam Proses Produksi Tepung Ubi Kayu’, Pangan, 25(2), pp. 113–124.
  13. Franck, A. (2006) ‘Oligofructose-enriched inulin stimulates calcium absorption and bone mineralisation’, Nutrition Bulletin, 31(4), pp. 341–345. doi: 10.1111/j.1467-3010.2006.00584.x.
  14. Gropper, S. S., Smith, J. L. and Groff, J. L. (2008) Advanced Nutrition and Human Metabolism, Fifth Edition. 5th edn. USA: Wadsworth Cengage Learning. doi: 10.1111/j.1753-4887.1997.tb01621.x.
  15. Guéguen, L. and Pointillart, A. (2000) ‘The Bioavailability of Dietary Calcium’, Journal of the American College of Nutrition, 19(2), pp. 119S-136S. doi: 10.1080/07315724.2000.10718083.
  16. Gunawan, S. et al. (2015) ‘Effect of fermenting cassava with Lactobacillus plantarum, Saccharomyces cereviseae, and Rhizopus oryzae on the chemical composition of their flour’, International Food Research Journal, 22(3), pp. 1280–1287.
  17. Guyton, A. C. and Hall, J. E. (1996) Fisiologi Manusia dan Mekanisme Penyakit (Human Physiology and Mechanism of Disease). 3rd edn. Jakarta: Kedokteran EGC.
  18. Hardiansyah, A., Hardinsyah, H. and Sukandar, D. (2017) ‘Kesesuaian Konsumsi Pangan Anak Indonesia Dengan Pedoman Gizi Seimbang’, Nutri-Sains: Jurnal Gizi, Pangan dan Aplikasinya, 1(2), p. 35. doi: 10.21580/ns.2017.1.2.2452.
  19. Herminiati, A. et al. (2019) ‘Formulasi Bubur Instan sebagai Makanan Pendamping Air Susu Ibu (MP-ASI) Berbahan Dasar Mocaf’. Indonesia.
  20. Herminiati, A., Kristanti, D., et al. (2020) ‘Characteristics of inulin-enriched instant porridge and its effectiveness to increase calcium absorption in infant rat models’, Current Research in Nutrition and Food Science, 8(1), pp. 256–267. doi: 10.12944/CRNFSJ.8.1.24.
  21. Herminiati, A., Rimbawan, R., et al. (2020) ‘The application and effectiveness of Difructose Anhydride III to increase absorption of calcium in calcium-deficient rats’, 10(4), pp. 168–179.
  22. van den Heuvel, E. G. H. M., Schoterman, M. H. C. and Muijs, T. (2000) ‘Transgalactooligosaccharides Stimulate Calcium Absorption in Postmenopausal Women’, The Journal of Nutrition, 130(12), pp. 2938–2942. doi: 10.1093/jn/130.12.2938.
  23. Hu, C. C., Liu, L. Y. and Yang, S. S. (2012) ‘Protein enrichment, cellulase production and in vitro digestion improvement of pangolagrass with solid state fermentation’, Journal of Microbiology, Immunology and Infection, 45(1), pp. 7–14. doi: 10.1016/j.jmii.2011.09.022.
  24. Hutagalung, H. et al. (2007) Ilmu Gizi Dasar. Medan: Universitas Sumatera Utara.
  25. Kementerian Kesehatan RI (2019) ‘Laporan Hasil Riset Kesehatan Dasar (Riskesdas) Indonesia tahun 2018’, Riset Kesehatan Dasar 2018, pp. 182–183.
  26. Kerstetter, J. E., O’Brien, K. O. and Insogna, K. L. (2003) ‘Dietary protein, calcium metabolism, and skeletal homeostasis revisited’, American Journal of Clinical Nutrition, 78(3 SUPPL.), pp. 584–592. doi: 10.1093/ajcn/78.3.584s.
  27. Kılıç, A. et al. (2012) ‘Are There any Toxic Effects of Food Additive Tricalcium Phosphate on Pregnant Rats and’, 40(2), pp. 171–181.
  28. Krupa-Kozak, U. et al. (2017) ‘Administration of inulin-supplemented gluten-free diet modified calcium absorption and caecal microbiota in rats in a calcium-dependent manner’, Nutrients, 9(7). doi: 10.3390/nu9070702.
  29. Lestari, S. (2016) ‘Prosiding seminar nasional agroinovasi spesifik lokasi untuk ketahanan pangan pada era masyarakat ekonomi ASEAN ; analisis daya saing lada hitam di kabupaten Lampung Timur’, pp. 165–173.
  30. Miller, G. D., Jarvis, J. K. and McBean, L. D. (2001) ‘The Importance of Meeting Calcium Needs with Foods’, Journal of the American College of Nutrition, 20(2), pp. 168S-185S. doi: 10.1080/07315724.2001.10719029.
  31. Nutrition, A. and Agriculture, B. (1995) Nutrient Requirements of Laboratory. National Academies Press. doi: 10.17226/4758.
  32. Regu, G. M. et al. (2017) ‘Association between dietary carotenoid intake and bone mineral density in Korean adults aged 30–75 years using data from the fourth and fifth korean national health and nutrition examination surveys (2008–2011)’, Nutrients, 9(9). doi: 10.3390/nu9091025.
  33. Roberfroid, M. B. (2007) ‘Inulin-Type Fructans : Functional’, (5), pp. 2493–2502.
  34. Saito, K. et al. (2010) ‘Effect of mild restriction of food intake on gene expression profile in the liver of young rats: Reference data for in vivo nutrigenomics study’, British Journal of Nutrition, 104(7), pp. 941–950. doi: 10.1017/S0007114510001625.
  35. Salinas, M. V. et al. (2017) ‘Calcium–inulin wheat bread: prebiotic effect and bone mineralisation in growing rats’, International Journal of Food Science and Technology, 52(11), pp. 2463–2470. doi: 10.1111/ijfs.13531.
  36. Syahrial (2019) Pengaruh Pemberian Nano Daun Kelor (Moringa oleifera) Terhadap Kadar Mineral Serum Darah dan Tulang pada Tikus Jantan Tumbuh dan Betina yang Diovariektomi. Institut Pertanian Bogor.
  37. Theobald, H. (2005) ‘Dietary calcium and health’, Nutrition Bulletin, 30(3), pp. 237–277. doi: 10.1111/j.1467-3010.2005.00514.x.
  38. Triawanti et al. (2018) ‘Nutritional status improvement in Malnourished rat (Rattus norvegicus) after Seluang fish (Rasbora spp.) treatment’, Current Research in Nutrition and Food Science, 6(1), pp. 127–134. doi: 10.12944/CRNFSJ.6.1.14.
  39. UNICEF, WHO and Group, W. B. (2019) Levels and trends in child malnutrition: Key Findings of the 2019 Edition of the Joint Child Malnutrition Estimates, WHO. Geneva. doi: 10.18356/6ef1e09a-en.
  40. Wang, F. et al. (2017) ‘β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway’, Life Sciences. Elsevier Inc, 174, pp. 15–20. doi: 10.1016/j.lfs.2017.03.002.
  41. WHO (2014) Stunting Policy Brief, WHO Global Nutrition Target.
  42. Wongdee, K. et al. (2019) ‘Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake’, Journal of Physiological Sciences. Springer Japan, 69(5), pp. 683–696. doi: 10.1007/s12576-019-00688-3.

Open Access Copyright (c) 2020 Nutri-Sains: Jurnal Gizi, Pangan dan Aplikasinya
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publisher
Program Studi Gizi Fakultas Psikologi dan Kesehatan (FPK)
Universitas Islam Negeri Walisongo Semarang
Jl. Prof. Hamka KM.2, Semarang, Central Java, Indonesia
Email: nutrisains@walisongo.ac.id

 

apps