Exploring political communication through data mining: A case study of the 2024 Indonesian presidential election

Authors

DOI:

https://doi.org/10.21580/icj.2024.9.2.24087

Keywords:

Sentiment analysis, political communication, presidential election, social media, data mining

Abstract

This study aims to explore the perceptions of social media users (netizens) towards the 2024 presidential candidates of the Republic of Indonesia through sentiment analysis and political communication expressions. Secondary data was collected using the Application Programming Interface (API) of social media platforms by utilising programming algorithms for the data collection and analysis process. The study population consisted of tweets discussing 2024 presidential candidates on platform X and YouTube, with a sample size of 50,000 data. The results revealed significant trends in netizen sentiment and communication patterns, providing implications regarding netizen political engagement and opinions. This study concludes that the dynamics of political discourse in Indonesia's digital realm have important implications to be understood in the context of general elections. In addition, this research contributes to emphasizing the important role of digital media in the political context, especially political communication.

*****

Penelitian ini bertujuan untuk mengeksplorasi persepsi pengguna media sosial (netizen) terhadap calon presiden Republik Indonesia 2024 melalui analisis sentimen dan ekspresi komunikasi politik. Data sekunder dikumpulkan dengan menggunakan Application Programming Interface (API) platform media sosial dengan memanfaatkan algoritma pemrograman untuk proses pengumpulan dan analisis data. Populasi penelitian terdiri dari tweet yang membahas calon presiden 2024 di platform X dan YouTube, dengan jumlah sampel sebanyak 50.000 data. Hasil penelitian menunjukkan tren yang signifikan dalam sentimen netizen dan pola komunikasi, yang memberikan implikasi terkait keterlibatan dan opini politik netizen. Penelitian ini menyimpulkan bahwa dinamika wacana politik di ranah digital Indonesia memiliki implikasi yang penting untuk dipahami dalam konteks pemilihan umum. Selain itu, studi ini berkontribusi dalam menegaskan peran penting media digital dalam konteks politik terutama komunikasi politik.

Downloads

Download data is not yet available.

Author Biography

Abdul Karim, Universitas Islam Negeri Walisongo Semarang

Scopus ID: 57196185152

Google Scholar ID: bqs0lKAAAAAJ

References

Adeni, A., Karim, A., & Koroglu, O. (2021). New media abuse and hoax in ma'nai harfi and ma'nai ismi perspective: A study of Badi'uzzaman Sa'id Nursi thought. TSAQAFAH, 17(2), 229-252.

Antons, D., Grünwald, E., Cichy, P., & Salge, T. O. (2020). The application of text mining methods in innovation research: Current state, evolution patterns, and development priorities. R&D Management, 50(3), 329-351.

Avasthi, S., Chauhan, R., & Acharjya, D. P. (2021). Techniques, applications, and issues in mining large-scale text databases. In Advances in Information Communication Technology and Computing (pp. 385-396). Springer, Singapore.

Badan Pusat Statistika . (2020). Statistics Indonesia.

Bhatt, K. (2020). Measuring service fairness and its impact on service quality and satisfaction: A study of Indian banking services. Journal of Financial Services Marketing, 25(1), 35-44.

Bi, Y., & Kim, I. (2020). Older travellers' E-loyalty: The roles of service convenience and social presence in travel websites. Sustainability, 12(1), 410.

Bubendorff, S., Rizza, C., & Prieur, C. (2021). Construction and dissemination of information veracity on French social media during crises: Comparison of X and Wikipedia. Journal of Contingencies and Crisis Management, 29(2), 204-216.

Calderaro, A. (2018). Social media and politics. The Sage Handbook of Political Sociology, 781-796.

Chen, J., Gong, Z., & Liu, W. (2020). A Dirichlet process biterm-based mixture model for short text stream clustering. Applied Intelligence, 50(5), 1609-1619.

Dziuba, S., Cierniak-Emerych, A., Michalski, G., Poulova, P., Mohelská, H., & Klimova, B. (2021). The use of the internet by older adults in Poland. Universal Access in the Information Society, 20(1), 171-178.

Fernández Gómez, J. D., Pineda, A., & Gordillo-Rodriguez, M. T. (2021). Celebrities, advertising endorsement, and political marketing in Spain: The popular party's April 2019 election campaign. Journal of Political Marketing, 1-26.

Hassani, H., Beneki, C., Unger, S., Mazinani, M. T., & Yeganegi, M. R. (2020). Text mining in big data analytics. Big Data and Cognitive Computing, 4(1), 1.

He, T., Huang, C., Li, M., Zhou, Y., & Li, S. (2020). Social participation of the elderly in China: The roles of conventional media, digital access and social media engagement. Telematics and Informatics, 48, 101347.

Ji, D., Tao, P., Fei, H., & Ren, Y. (2020). An end-to-end joint model for evidence information extraction from court record documents. Information Processing & Management, 57(6), 102305.

Karim, A., & Riyadi, A. (2024). Analysing big data of da'wah manuscripts based on Dimensions: Mapping research on da'wah on social media. Journal of Da'wah Science, 44(1), 1-14.

Karthikeyan, S., Jotheeswaran, J., Balamurugan, B., & Chatterjee, J. M. (2020). Text mining. In Natural Language Processing in Artificial Intelligence (pp. 167-210). Apple Academic Press.

Kim, Y., Wang, Q., & Roh, T. (2021). Do information and service quality affect perceived privacy protection, satisfaction, and loyalty? Evidence from a Chinese O2O-based mobile shopping application. Telematics and Informatics, 56, 101483.

Kumar, A., Dabas, V., & Hooda, P. (2020). Text classification algorithms for mining unstructured data: a SWOT analysis. International Journal of Information Technology, 12(4), 1159-1169.

Liu, J., Xia, C., Yan, H., & Sun, J. (2020). A feasible Chinese text data preprocessing strategy. In 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0234-0239). IEEE.

Mishra, B. K., & Kumar, R. (Eds.). (2020). Natural language processing in artificial intelligence. CRC Press.

Mudhofi, M., Adeni, A., & Karim, A. (2024). Implications of the meeting of religion and new media for contemporary da'wah in Indonesia. Journal of Da'wah Science, 44(1), 201-216.

Mudhofi, M., & Karim, A. (2024). Transformation of new media in Aswaja al-Nahdliyyah da'wah: Strategies and challenges in the contestation of religious authority in Indonesia. Islamic Communication Journal, 9(1), 133-146.

Mudhofi, M., Supena, I., Karim, A., Safrodin, S., & Solahuddin, S. (2023). Public opinion analysis for moderate religious: Social media data mining approach. Journal of Da'wah Science, 43(1), 1-27.

Mukhudwana, R. F. (2020). #Zuma must fall this February: Homophily on the echo-chambers of political leaders' X accounts. In Social Media and Elections in Africa, Volume 2 (pp. 175-202). Palgrave Macmillan, Cham.

Nurlaila, I., Rahutomo, R., Purwandari, K., & Pardamean, B. (2020). Provoking tweets by Indonesian media X in the initial month of coronavirus disease hit. In 2020 International Conference on Information Management and Technology (ICIMTech) (pp. 409-414). IEEE.

Noorikhsan, F., Ramdhani, H., Sirait, B., & Khoerunisa, N. (2023). The Dynamics of the Internet, Social Media, and Politics in the Contemporary Era: A Review of State-Society Relations. Journal of Political Issues, 5(1), 95-109. https://doi.org/10.33019/jpi.v5i1.131.

Ozyurt, B., & Akcayol, M. A. (2021). A new topic modelling based approach for aspect extraction in aspect based sentiment analysis: SS-LDA. Expert Systems with Applications, 168, 114231.

Robin, P. (2020). Social media practices combat conventional media (review of political communication of the 2019 Indonesian Presidential Election). Public Corner, 15(1), 1-17.

Shahbazi, Z., & Byun, Y. C. (2020). Analysis of domain-independent unsupervised text segmentation using LDA topic modelling over social media contents. Int. J. Adv. Sci. Technol, 29(6), 5993-6014.

Skill, K., Passero, S., & Francisco, M. (2021). Assembling amazon fires through English hashtags. Materializing environmental activism within X networks. Computer Supported Cooperative Work (CSCW), 1-18.

Sudarmanti, N. S. R. (2021). Literacy transformation in X user dialectics: A library context in Indonesia. Psychology and Education Journal, 58(2), 4475-4485.

Vayansky, I., & Kumar, S. A. (2020). A review of topic modelling methods. Information Systems, 94, 101582.

Zhang, X. A., & Cozma, R. (2022). Risk sharing on X: Social amplification and attenuation of risk in the early stages of the COVID-19 pandemic. Computers in Human Behaviour, 126, 106983.

Downloads

Published

2024-12-27 — Updated on 2024-12-27

Versions

Issue

Section

Articles