Effects of caffeine intake and performance pressure on working memory
DOI:
https://doi.org/10.21580/pjpp.v8i1.15557Keywords:
caffeine, Galvanic Skin Response, Modular Arithmetic Tasks, OpenSesame, performance pressure, working memoryAbstract
Performance pressure and caffeine consumption, a common combination in daily life, have both been shown to affect cognitive performance. However, previous research has not fully elucidated the extent to which the effects of caffeine and performance pressure impact cognitive function, especially working memory. This study aims to examine the possibility that caffeine can enhance working memory performance under pressure. A total of 61 participants aged 18 to 32 participated, divided into four groups. Experiment-based data collection was conducted with a single-blind design. Working memory was measured by Modular Arithmetic Tasks with the OpenSesame program. All participants were asked to perform arithmetic tasks and arousal levels were measured using the Galvanic Skin Response (GSR). The findings revealed no evidence of an interaction effect of caffeine intake and performance pressure on working memory (F= .632, p= .431,hp2= .012). Given the prevalence of caffeine intake prior to facing high-pressure situations, the consumption of a cup of coffee does not improve cognitive performance as many would expect. However, caffeine intake had a stabilizing effect on the skin conductance response values during performance under pressure. Clinical psychologists can use a daily dose of caffeine as an alternative intervention or preventative measure to help patients reduce performance pressure-related anxiety.Downloads
References
Aarts, E., Wallace, D. L., Dang, L. C., Jagust, W. J., Cools, R., & D’Esposito, M. (2014). Dopamine and the cognitive downside of a promised bonus. Psychological Science, 25(4), 1003–1009. https://doi.org/10.1177/0956797613517240
Adan, A., Prat, G., Fabbri, M., & Sànchez-Turet, M. (2008). Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(7), 1698–1703. https://doi.org/10.1016/j.pnpbp.2008.07.005
Addicott, M. A., Yang, L. L., Peiffer, A. M., Burnett, L. R., Burdette, J. H., Chen, M. Y., Hayasaka, S., Kraft, R. A., Maldjian, J. A., & Laurienti, P. J. (2009). The effect of daily caffeine use on cerebral blood flow: How much caffeine can we tolerate? Human Brain Mapping, 30(10), 3102–3114. https://doi.org/10.1002/hbm.20732
Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003
Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410–422. https://doi.org/10.1038/nrn2648
Ashcraft, M. H., & Faust, M. W. (1994). Mathematics anxiety and mental arithmetic performance: An exploratory investigation. Cognition & Emotion, 8(2), 97–125. https://doi.org/10.1080/02699939408408931
Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224–237. https://doi.org/10.1037/0096-3445.130.2.224
Baddeley, A. (2007). Working memory, thought, and action. Oxford University Press.
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422
Batista, P., Rodrigues, P. M., Ferreira, M., Moreno, A., Silva, G., Alves, M., Pintado, M., & Oliveira-Silva, P. (2022). Validation of psychophysiological measures for caffeine oral films characterization by machine learning approaches. Bioengineering, 9(3), 114. https://doi.org/10.3390/bioengineering9030114
Beckmann, J., Gröpel, P., & Ehrlenspiel, F. (2013). Preventing motor skill failure through hemisphere-specific priming: Cases from choking under pressure. Journal of Experimental Psychology: General, 142(3), 679–691. https://doi.org/10.1037/a0029852
Beilock, S. L. (2008). Math performance in stressful situations. Current Directions in Psychological Science, 17(5), 339–343. https://doi.org/10.1111/j.1467-8721.2008.00602.x
Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004). More on the fragility of performance: Choking under pressure in mathematical problem solving. Journal of Experimental Psychology: General, 133(4), 584–600. https://doi.org/10.1037/0096-3445.133.4.584
Bijleveld, E., & Veling, H. (2014). Separating chokers from nonchokers: Predicting real-life tennis performance under pressure from behavioral tasks that tap into working memory functioning. Journal of Sport and Exercise Psychology, 36(4), 347–356. https://doi.org/10.1123/jsep.2013-0051
Blasiman, R. N., & Was, C. A. (2018). Why is working memory performance unstable? A review of 21 factors. Europe’s Journal of Psychology, 14(1), 188–231. https://doi.org/10.5964/ejop.v14i1.1472
Boere, J. J., Fellinger, L., Huizinga, D. J. H., Wong, S. F., & Bijleveld, E. (2016). Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms. Brain and Cognition, 102, 26–32. https://doi.org/10.1016/j.bandc.2015.11.006
Böheim, R., Grübl, D., & Lackner, M. (2019). Choking under pressure – Evidence of the causal effect of audience size on performance. Journal of Economic Behavior & Organization, 168, 76–93. https://doi.org/10.1016/j.jebo.2019.10.001
Boucsein, W. (2012). Electrodermal Activity (2nd ed.). Springer US. https://doi.org/10.1007/978-1-4614-1126-0
Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276–298. https://doi.org/10.1037/1528-3542.1.3.276
Braithwaite, J. J., Watson, D. P., Jones, R. O., & Rowe, M. A. (2013). Guide for Analysing Electrodermal Activity & Skin Conductance Responses for Psychological Experiments [CTIT technical reports series].
Brunyé, T. T., Mahoney, C. R., Lieberman, H. R., Giles, G. E., & Taylor, H. A. (2010). Acute caffeine consumption enhances the executive control of visual attention in habitual consumers. Brain and Cognition, 74(3), 186–192. https://doi.org/10.1016/j.bandc.2010.07.006
Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition, 2(1), 16. https://doi.org/10.5334/joc.72
Cappelletti, S., Daria, P., Sani, G., & Aromatario, M. (2015). Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Current Neuropharmacology, 13(1), 71–88. https://doi.org/10.2174/1570159X13666141210215655
Carli, M., & Invernizzi, R. W. (2014). Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Frontiers in Neural Circuits, 8. https://doi.org/10.3389/fncir.2014.00058
Christopoulos, G. I., Uy, M. A., & Yap, W. J. (2019). The body and the brain: Measuring skin conductance responses to understand the emotional experience. Organizational Research Methods, 22(1), 394–420. https://doi.org/10.1177/1094428116681073
Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education (10 ed.). Routledge. https://doi.org/10.4324/9780203029053
Cools, R., & D’Esposito, M. (2011). Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69(12), e113–e125. https://doi.org/10.1016/j.biopsych.2011.03.028
Costa, J., Guimbretière, F., Jung, M. F., & Choudhury, T. (2019). BoostMeUp: Improving cognitive performance in the moment by unobtrusively regulating emotions with a smartwatch. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(2), 1–23. https://doi.org/10.1145/3328911
Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26(2), 197–223. https://doi.org/10.1007/s10648-013-9246-y
Critchley, H. D. (2002). Review: Electrodermal responses: What happens in the brain. The Neuroscientist, 8(2), 132–142. https://doi.org/10.1177/107385840200800209
Dawson, M. E., Schell, A. M., & Filion, D. L. (2000). The electrodermal system. In Handbook of Psychophysiology (Second, pp. 200–223). Cambridge Press.
DeCaro, M. S., Rotar, K. E., Kendra, M. S., & Beilock, S. L. (2010). Diagnosing and alleviating the impact of performance pressure on mathematical problem solving. Quarterly Journal of Experimental Psychology, 63(8), 1619–1630. https://doi.org/10.1080/17470210903474286
DeCaro, M. S., Thomas, R. D., Albert, N. B., & Beilock, S. L. (2011). Choking under pressure: Multiple routes to skill failure. Journal of Experimental Psychology: General, 140(3), 390–406. https://doi.org/10.1037/a0023466
Dechenaux, E., Kovenock, D., & Sheremeta, R. M. (2015). A survey of experimental research on contests, all-pay auctions and tournaments. Experimental Economics, 18(4), 609–669. https://doi.org/10.1007/s10683-014-9421-0
Duff, S. J., & Hampson, E. (2000). A beneficial effect of estrogen on working memory in postmenopausal women taking hormone replacement therapy. Hormones and Behavior, 38(4), 262–276. https://doi.org/10.1006/hbeh.2000.1625
El Sayed, K., Macefield, V. G., Hissen, S. L., Joyner, M. J., & Taylor, C. E. (2016). Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress: Blood pressure and sympathetic responses to stressors. The Journal of Physiology, 594(24), 7465–7482. https://doi.org/10.1113/JP272963
Flaten, M. A., Aasli, O., & Blumenthal, T. D. (2003). Expectations and placebo responses to caffeine-associated stimuli. Psychopharmacology, 169(2), 198–204. https://doi.org/10.1007/s00213-003-1497-8
Glade, M. J. (2010). Caffeine-not just a stimulant. Nutrition (Burbank, Los Angeles County, Calif.), 26(10), 932–938. https://doi.org/10.1016/j.nut.2010.08.004
Hale, S., Rose, N. S., Myerson, J., Strube, M. J., Sommers, M., Tye-Murray, N., & Spehar, B. (2011). The structure of working memory abilities across the adult life span. Psychology and Aging, 26(1), 92–110. https://doi.org/10.1037/a0021483
Hampson, E., & Morley, E. E. (2013). Estradiol concentrations and working memory performance in women of reproductive age. Psychoneuroendocrinology, 38(12), 2897–2904. https://doi.org/10.1016/j.psyneuen.2013.07.020
Haskell, C. F., Kennedy, D. O., Wesnes, K. A., & Scholey, A. B. (2005). Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology, 179(4), 813–825. https://doi.org/10.1007/s00213-004-2104-3
Imbo, I., Vandierendonck, A., & Vergauwe, E. (2007). The role of working memory in carrying and borrowing. Psychological Research, 71(4), 467–483. https://doi.org/10.1007/s00426-006-0044-8
Jansen, B. R. J., Louwerse, J., Straatemeier, M., Van der Ven, S. H. G., Klinkenberg, S., & Van der Maas, H. L. J. (2013). The influence of experiencing success in math on math anxiety, perceived math competence, and math performance. Learning and Individual Differences, 24, 190–197. https://doi.org/10.1016/j.lindif.2012.12.014
Jee, S. H., He, J., Whelton, P. K., Suh, I., & Klag, M. J. (1999). The effect of chronic coffee drinking on blood pressure: A meta-analysis of controlled clinical trials. Hypertension, 33(2), 647–652. https://doi.org/10.1161/01.HYP.33.2.647
Klaassen, E. B., de Groot, R. H. M., Evers, E. A. T., Snel, J., Veerman, E. C. I., Ligtenberg, A. J. M., Jolles, J., & Veltman, D. J. (2013). The effect of caffeine on working memory load-related brain activation in middle-aged males. Neuropharmacology, 64, 160–167. https://doi.org/10.1016/j.neuropharm.2012.06.026
Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American Psychologist, 50(5), 372–385. https://doi.org/10.1037/0003-066X.50.5.372
Lejbak, L., Crossley, M., & Vrbancic, M. (2011). A male advantage for spatial and object but not verbal working memory using the n-back task. Brain and Cognition, 76(1), 191–196. https://doi.org/10.1016/j.bandc.2010.12.002
Lempert, K. M., & Phelps, E. A. (2014). Neuroeconomics of emotion and decision making. In Neuroeconomics (pp. 219–236). Elsevier. https://doi.org/10.1016/B978-0-12-416008-8.00012-7
Lieberman, H., Tharion, W., Shukitt-Hale, B., Speckman, K., & Tulley, R. (2002). Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Psychopharmacology, 164(3), 250–261. https://doi.org/10.1007/s00213-002-1217-9
Lin, Y.-S., Weibel, J., Landolt, H.-P., Santini, F., Slawik, H., Borgwardt, S., Cajochen, C., & Reichert, C. F. (2023). Brain activity during a working memory task after daily caffeine intake and caffeine withdrawal: A randomized double-blind placebo-controlled trial. Scientific Reports, 13(1), 1002. https://doi.org/10.1038/s41598-022-26808-5
Lorist, M. M., & Tops, M. (2003). Caffeine, fatigue, and cognition. Brain and Cognition, 53(1), 82–94. https://doi.org/10.1016/S0278-2626(03)00206-9
Lyvers, M., Brooks, J., & Matica, D. (2004). Effects of caffeine on cognitive and autonomic measures in heavy and light caffeine consumers. Australian Journal of Psychology, 56(1), 33–41. https://doi.org/10.1080/00049530410001688119
Mattarella-Micke, A., Mateo, J., Kozak, M. N., Foster, K., & Beilock, S. L. (2011). Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety. Emotion, 11(4), 1000–1005. https://doi.org/10.1037/a0023224
McCann, J., & Selsky, J., W. (2012). Mastering turbulence: The essential capabilities of agile and resilient individuals, teams and organizations. Jassey-Bass.
Mort, J. R., & Kruse, H. R. (2008). Timing of blood pressure measurement related to caffeine consumption. Annals of Pharmacotherapy, 42(1), 105–110. https://doi.org/10.1345/aph.1K337
Nehlig, A. (2010). Is caffeine a cognitive enhancer? Journal of Alzheimer’s Disease, 20(s1), S85–S94. https://doi.org/10.3233/JAD-2010-091315
Peeling, P., & Dawson, B. (2007). Influence of caffeine ingestion on perceived mood states, concentration, and arousal levels during a 75-min university lecture. Advances in Physiology Education, 31(4), 332–335. https://doi.org/10.1152/advan.00003.2007
Pelligrino, D. A., Xu, H.-L., & Vetri, F. (2010). Caffeine and the control of cerebral hemodynamics. Journal of Alzheimer’s Disease, 20(s1), S51–S62. https://doi.org/10.3233/JAD-2010-091261
Reidel, W., Hogervorst, E., Leboux, R., Verhey, F., van Praag, H., & Jolles, J. (1995). Caffeine attenuates scopolamine-induced memory impairment in humans. Psychopharmacology, 122(2), 158–168. https://doi.org/10.1007/BF02246090
Reimann, M., & Bechara, A. (2010). The somatic marker framework as a neurological theory of decision-making: Review, conceptual comparisons, and future neuroeconomics research. Journal of Economic Psychology, 31(5), 767–776. https://doi.org/10.1016/j.joep.2010.03.002
Richards, G., & Smith, A. (2015). Caffeine consumption and self-assessed stress, anxiety, and depression in secondary school children. Journal of Psychopharmacology, 29(12), 1236–1247. https://doi.org/10.1177/0269881115612404
Riksen, N. P., Rongen, G. A., & Smits, P. (2009). Acute and long-term cardiovascular effects of coffee: Implications for coronary heart disease. Pharmacology & Therapeutics, 121(2), 185–191. https://doi.org/10.1016/j.pharmthera.2008.10.006
Schneider, R., Grüner, M., Heiland, A., Keller, M., Kujanová, Z., Peper, M., Riegl, M., Schmidt, S., Volz, P., & Walach, H. (2006). Effects of expectation and caffeine on arousal, well-being, and reaction time. International Journal of Behavioral Medicine, 13(4), 330–339. https://doi.org/10.1207/s15327558ijbm1304_8
Smeding, A., Darnon, C., & Van Yperen, N. W. (2015). Why do high working memory individuals choke? An examination of choking under pressure effects in math from a self-improvement perspective. Learning and Individual Differences, 37, 176–182. https://doi.org/10.1016/j.lindif.2014.11.005
Smith, A. (2002). Effects of caffeine on human behavior. Food and Chemical Toxicology, 40(9), 1243–1255. https://doi.org/10.1016/S0278-6915(02)00096-0
Smith, A. (2009). Effects of caffeine in chewing gum on mood and attention. Human Psychopharmacology: Clinical and Experimental, 24(3), 239–247. https://doi.org/10.1002/hup.1020
Smith, A. P. (2013). Caffeine, extraversion and working memory. Journal of Psychopharmacology, 27(1), 71–76. https://doi.org/10.1177/0269881112460111
Smith, A. P., Sturgess, W., & Gallagher, J. (1999). Effects of a low dose of caffeine given in different drinks on mood and performance. Human Psychopharmacology: Clinical and Experimental, 14, 478–482.
Uittenhove, K., & Lemaire, P. (2013). Strategy sequential difficulty effects vary with working-memory and response–stimulus-intervals: A study in arithmetic. Acta Psychologica, 143(1), 113–118. https://doi.org/10.1016/j.actpsy.2013.02.007
Ullrich, S., de Vries, Y. C., Kühn, S., Repantis, D., Dresler, M., & Ohla, K. (2015). Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment. Physiology & Behavior, 151, 629–637. https://doi.org/10.1016/j.physbeh.2015.08.028
Unsworth, N., & Engle, R. (2005). Working memory capacity and fluid abilities: Examining the correlation between Operation Span and Raven. Intelligence, 33(1), 67–81. https://doi.org/10.1016/j.intell.2004.08.003
Uziel, L. (2007). Individual differences in the social facilitation effect: A review and meta-analysis. Journal of Research in Personality, 41(3), 579–601. https://doi.org/10.1016/j.jrp.2006.06.008
Vogel, S., & Schwabe, L. (2016). Learning and memory under stress: Implications for the classroom. Npj Science of Learning, 1(1), 16011. https://doi.org/10.1038/npjscilearn.2016.11
Wan, C. Y., & Huon, G. F. (2005). Performance degradation under pressure in music: An examination of attentional processes. Psychology of Music, 33(2), 155–172. https://doi.org/10.1177/0305735605050649
Wine, J. (1971). Test anxiety and direction of attention. Psychological Bulletin, 76(2), 92–104. https://doi.org/10.1037/h0031332
Yu, R. (2015). Choking under pressure: The neuropsychological mechanisms of incentive-induced performance decrements. Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00019
Zwaan, R. A., Pecher, D., Paolacci, G., Bouwmeester, S., Verkoeijen, P., Dijkstra, K., & Zeelenberg, R. (2018). Participant nonnaiveté and the reproducibility of cognitive psychology. Psychonomic Bulletin & Review, 25(5), 1968–1972. https://doi.org/10.3758/s13423-017-1348-y
Downloads
Published
How to Cite
Issue
Section
License
The copyright of the accepted article shall be assigned to the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to published articles.
In line with the license, authors and any users (readers and other researchers) are allowed to share and adapt the material only for non-commercial purposes. In addition, the material must be given appropriate credit, provided with a link to the license, and indicated if changes were made. If authors remix, transform, or build upon the material, authors must distribute their contributions under the same license as the original.