FENOMENOLOGI KEMAMPUAN PEMAHAMAN KONSEPTUAL, REPRESENTASI, DAN ALGORITMA MAHASISWA PADA MATERI STOIKIOMETRI

Aulia Rizki Fitriani*  -  SDIT Alam Harapan Ummat Purbalingga, Indonesia
Atik Rahmawati  -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Ulya Lathifa  -  SMP Negeri 1 Undaan, Indonesia

(*) Corresponding Author
Salah satu dasar dalam mempelajari kimia kuantitatif adalah stoikiometri. Dengan demikian dibutuhkan kemampuan-kemampuan yang dapat mendukung mahasiswa dalam mempelajari stoikiometri. Tujuan dari penelitian ini adalah untuk mengetahui tingkat kemampuan pemahaman konseptual, representasi, dan algoritma mahasiswa pada materi stoikiometri. Subjek dalam penelitian ini adalah mahasiswa program studi Pendidikan Kimia angkatan 2019 pada kelas D yang telah mempelajari stoikiometri pada mata kuliah Kimia Dasar I.  Penelitian ini merupakan penelitian deskriptif, berpendekatan kualitatif, dan menggunakan desain fenomenologi dengan teknik penelitian berupa tes dan wawancara.  Hasil penelitian menyatakan bahwa tingkat kemampuan pemahaman konseptual mahasiswa yaitu 32,5% pada kategori intuitive understanding, 37,5% pada kategori functional misconception, 6,25%, pada kategori partial understanding, 1,25% pada kategori correct incomplete understanding, dan 22,5% kategori best understanding. Adapun tingkat kemampuan representasi mahasiswa pada fenomena submikroskopik sebesar 13,53% dan fenomena simbolik sebesar 70,13%. Sementara itu, tingkat kemampuan algoritma mahasiswa pada kategori unistruktural, 3,75% pada kategori multistruktural, 43,75% pada kategori relasional, dan 0% kategori extend abstract.

Supplement Files

  1. Astuti, F., & Redjeki, T. 2016. Identifikasi Miskonsepsi dan Penyebabnya pada Siswa Kelas XI MIA SMA Negeri 1 Sukoharjo pada Materi Pokok Stoikiometri. Jurnal Pendidikan Kimia, 5(2), 10–17.
  2. Bridges, C. D. 2015. Experiences Teaching Stoichiometry to Students in Grades 10 and 11. Disertasi. Minneapolis : Walden University.
  3. Chang, R. (2003). Kimia Dasar : Konsep-konsep Inti. Terjemahan. Edisi Ketiga. Jakarta : Erlangga.
  4. Chong, S. H., Goolamally, N., & Leong, K. E. 2019. Post-secondary Science Students’ Understanding on Mole Concept and Solution Concentration, Universal Journal of Educational Research, 7(4), 986–1000.
  5. Creswell, J. W. (2014). Research Design Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). California : SAGE Publications.
  6. Dahsah, C., & Coll, R. K. 2007. The Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems, Research in Science & Technological Education 25(2), 37–41.
  7. Evans, K. L. 2007. Learning Stoichiometry: A Comparison of Text and Multimedia Instructional Formats. Disertasi. Pennsylvania : University of Pittsburgh.
  8. Fahriyah, A. R., & Wiyarsi, A. 2017. Multiple Representations Skill of High School Students on Reaction Rate Material. Prosiding, Proceeding The 2nd International Seminar on Chemical Education 2017 yang diselenggarakan oleh Prodi Pendidikan Kimia Universitas Islam Indonesia, tanggal 12-13 September 2017. Yogyakarta : Universitas Islam Indonesia.
  9. Gayeta, N. E., & Caballes, D. G. 2017. Measuring Conceptual Change on Stoichiometry Using Mental Models and Ill-Structured Problems In a Flipped Classroom Environment. Asia Pacific Journal of Multidisciplynary, 5(2), 104–113.
  10. Hafsah, T., Rosnani, H., Zurida, I., Kamaruzaman, J., & Yin, K. Y. 2014. The Influence of Students’ Concept of Mole, Problem Representation Ability and Mathematical Ability on Stoichiometry Problem Solving. Prosiding, The 2014 WEI International Academic Conference Proceedings yang diselenggarakan oleh The West East Institute. Bali.
  11. Hanson, R. 2016. Ghanaian Teacher Trainees’ Conceptual Understanding of Stoichiometry. Journal of Education and e-Learning Research. 3(1), 1–8.
  12. Hassel, S., & Ridout, N. 2018. An Investigation of First-Year Students’ and Lecturers’ Expectations of University Education. Frontiers in Psychology, 8.
  13. Herliani. 2016. Penggunaan Taksonomi SOLO (Structure of Observed Learning Outcomes) pada Pembelajaran Kooperatif Truth and Dare dengan Quick on the Draw untuk Meningkatkan Keterampilan Berpikir Siswa pada Biologi SMA. Proceeding Biology Education Conference yang diselenggarakan oleh Universitas Sebelas Maret.
  14. Indriyanti, N. Y., & Barke, H. 2017. Teaching the Mole Concept with Sub-Micro Level : Do the Students Perform Better?. Prosiding, The 4th International Conference on Research, Implementation, and Education of Mathematics and Science (4th ICRIEMS) yang diselenggarakan oleh Universitas Negeri Yogyakarta, tanggal 15-16 Mei 2017. Yogyakarta : Universitas Negeri Yogyakarta.
  15. Kothari, C. R. (1990). Research Methodology Methods and Techniques (2nd ed.). New Delhi : New Age International Publisher.
  16. Kumar, R. (2011). Research Methodology : A Step-by-step Guide for Beginners (3rd ed.). Great Britain : SAGE Publications.
  17. Larson, J. O. 1997. Constructing Understandings of the Mole Concept : Interactions of Chemistry Text, Teacher And Learners.
  18. Mason, J. (2002). Qualitative Researching (2nd ed.). Great Britain : SAGE Publications.
  19. Mweshi, E., Munyati, O., & Nachiyunde, K. 2019. Teachers’ Mole Concept Pedagogical Content Knowledge : Developing the Model for the Mole Concept Content Representations Framework. Journal of Esucation and Practice, 10(8), 51–65.
  20. Okanlawon, E. 2012. Bridging Theory and Practice: Application of Constructivist Tenets to the Teaching of Reaction Stoichiometry. AFRREV STECH : An International Journal of Science and Technology, 1(1), 144–163.
  21. Pamungkas, A. S., & Setiani, Y. 2017. Peranan Pengetahuan Awal dan Self Esteem Matematis Terhadap Kemampuan Berpikir Logis Mahasiswa. Kreano : Jurnal Matematika Kreatif - Inovatif, 8(1), 61–68.
  22. Pandey, P., & Pandey, M. M. (2015). Research Methodology: Tools and Techniques (1st ed.). Romania : Bridge Center.
  23. Santos, V. C., & Arroio, A. 2016. The Representational Levels : Influences and Contributions to Research in Chemical Education. Journal of Turkish Science Education, 13(1), 3–18.
  24. Scott, F. J. 2012. Is Mathematics to Blame? An Investigation into High School Students’ Difficulty in Performing Calculations in Chemistry. Chemistry Education Research and Practice, 330–336.
  25. Shehu, G. 2015. The Effect of Problem-Solving Instructional Strategies on Students’ Learning Outcomes in Senior Secondary School Chemistry. IOSR Journal of Research & Method in Education (IOSR-JRME), 5(1), 10–14.
  26. Sugiyono. (2016). Metode Penelitian Pendidikan : Pendekatan Kuantitatif, Kualitatif, dan R&D. Bandung : Alfabeta.
  27. Sujak, K. B., Gnanamalar, E., & Daniel, S. 2017. Understanding of Macroscopic , Microscopic and Symbolic Representations Among Form Four Students in Solving Stoichiometric Problems. Malaysian Online Journal of Educational Science, 5(3), 83–96.
  28. Sukmawati, W. 2019. Analisis Level Makroskopis , Mikroskopis dan Simbolik Mahasiswa dalam Memahami Elektrokimia. Jurnal Inovasi Pendidikan IPA, 5(2), 195–204.
  29. Sunyono & Meristin, A. 2018. The Effect of Multiple Representation-Based Learning ( MRL ) to Increase Students’ Understanding of Chemical Bonding Concepts. Jurnal Pendidikan IPA Indonesia, 7(4), 399–406.
  30. Sunyono, Efkar, T., & Munifatullah, F. 2017. The Influence of Multiple Representation Strategies To Improve The Mental Model of 10th Grade Students on the Concept of Chemical Bonding. The Turkish Online Journal of Design Art and Communication, December 2017 Special Edition : 1606–1614.
  31. Sunyono, Yuanita, L., & Ibrahim, M. 2013. Efektivitas Model Pembelajaran Berbasis Multipel Representasi dalam Membangun Model Mental Mahasiswa Topik Stoikiometri ReaksI. Journal Pendidikan Progresif, 3(1), 65–79.
  32. Walliman, N. (2011). Research Methods The Basics. Great Britain : Taylor & Francis e-Library.

Open Access Copyright (c) 2022 Journal of Educational Chemistry (JEC)
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Educational Chemistry (JEC)
Published by Chemistry Education Department of Science and Technology Faculty, Universitas Islam Negeri Walisongo Semarang, Indonesia
Jl Prof. Dr. Hamka Km. 01 Kampus II Ngaliyan Semarang 50185
Phone: (+62) 85640307383
Website: http://fst.walisongo.ac.id/
Email: jec@walisongo.ac.id

ISSN: 2715-3029 (Print)
ISSN: 2685-4880 (Online)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Get a feed by atom here, RRS2 here and OAI Links here

 
apps