REGRESI LOGISTIK: MENAKSIR PROBABILITAS PERISTIWA VARIABEL BINARI

Ibnu Hadjar*    -  Department of Religious Education UIN Walisongo, Semarang, Indonesia, Indonesia

(*) Corresponding Author

Prediksi melalui suatu pemodelan statistic merupakan kekuatan utama dari analisis regresi linier. Akan tetapi, teknik ini mensyaratkan variabel dependen atau kriteria harus memiliki data kontinum dan sebaran skor yang normal sehingga ia tidak dapat digunakan jika variabel kriterianya merupakan variabel binary (nominal dengan dua kategori, memiliki skor 1 atau 0). Regresi logistik merupakan teknik yang tepat untuk menggantikannya. Alih-alih menghasilkan taksiran skor variabel kriteria, pemodelan dengan regresi logistik menghasilkan taksiran probabilitas munculnya peristiwa (skor 1) pada variabel kriteria. Taksiran probabilitas tersebut diperoleh melalui model regresi yang menghasilkan nilai odds dan log odds, yang pada dasarnya merupakan cara pengungkapan yang berbeda tentang kenyataan yang sama terkait taksiran probabilitas munculnya peristiwa dari seluruh kejadian dalam variabel kriteria. 

Keywords: regresi logistik, variabel binary, odds, log odds, logit

  1. Askar, P., Usluel, Y. K. & Mumcu, F. K. (2006). Logistic Regression Modeling for Predicting Task-Related ICT Use in Teaching. Educational Technology & Society, 9 (2), 141-151.
  2. Garson, G. David, 2014, Logistik Regression: Binomial and Multinomial. Asheboro, NC, USA: Statistical Publishing Associates.
  3. Garson, G. D. (2009). “Logistic Regression” from Statnotes: Topics in Multivariate Analysis. Diunduh 21 Juni 2016 from ttp://faculty.chass.ncsu.edu/garson/pa765/statnote.htm.
  4. Glass, G. V., & Hopkins, K. D. (1984). Statistical Methods in Education and Psychology (2nd ed.). Englewood Cliffs, N. J.: Prentice-Hall.
  5. Gullickson, A. (2005). Odds and Probabilities. Diunduh pada 24 Januari 2017, dari: http://pages.uoregon.edu/aarong/teaching/G4075_Outline/node15.html.
  6. Hailpern, Susan M. & Paul F. Visintainer, 2003, Odds ratios and logistic regression: Further examples of their use and interpretation, The Stata Journal, 3(3), hh. 213–225.
  7. Hair, J.F., R.E. Anderson, R.L. Tatham, & W.C. Black, 1995, Multivariate Data Anaysis with Readings, Englewood Cliffs, Amerika Serikat: Prentice Hall International.
  8. Lee, M.C. & Su, L.E. (2015). Comparison Of Wavelet Network And Logistic Regression In Predicting Enterprise Financial Distress. International Journal of Computer Science & Information Technology, 7(3), 83-96. DOI:10.5121/ijcsit.2015.7307 83.
  9. Loh, Wei-Yin, 2006, Logistic Regression Tree Analysis, dalam H. Pham, ed. Handbook of Engineering Statistics, London: Springer, hh. 537–549.
  10. Minitab Inc. 2015, Minitab Support, diunduh 20 September 2016, dari http://support.minitab. com/en-us/minitab/17/topic-library/modeling-statistics/regression-and-correlation/logistic-regression/what-is-the-odds-ratio/.
  11. Oty, K. & Elliott, B. (2015). Algebra for the Sciences. Diunduh 20 September 2016 http://www. se.edu/ dept/math/ files/2015/06/Book-as-of-June-1-2015.pdf
  12. Pedhazur, E.J., Multiple regression in behavioral research: Explanation and prediction, New York: Holt, Rinehart, & Winston, 1982.
  13. Peng, C.J., Lee, K.L. & Ingersoll, G.M. (2002). An Introduction to Logistic Regression Analysis and Reporting. The Journal of Educational Research, 96(1), 3-14.
  14. Press, S.J. & Wilson, S. (1978). Choosing Between Logistic Regression and Discriminant Analysis. Journal of the American Statistical Association, 73(364), 699-705.
  15. Reed, P. & Wu, Y. (2013). Logistic regression for risk factor modelling in stuttering research. Journal of Fluency Disorders, 38, 88–101.
  16. Strömbergsson, S. (2009). Binary Logistic Regression and its application to data from a study of children's recognition of their own recorded voices. Diunduh 23 Pebruari 2017 dari: http://stp.lingfil.uu.se/~nivre/statmet/strombergsson.pdf.
  17. Tognetti, K. (1998). e-the exponential-the magic number of growth. Diunduh 23 Pebruari 2017 dari: https://www.austms.org.au/Modules/Exp/exp.pdf.
  18. Upton, Graham & Ian Cook, 2011, A Dictionary of Statistics, New York: Oxford University Press.
  19. Wuensch, K.L. (2014). Binary Logistic Regression with SPSS. Diunduh 24 Maret 2016, dari: http://core.ecu.edu/psyc/wuenschk/MV/multReg/Logistic-SPSS.pdf.
  20. Yoo, W., Ference, B. A., Cote, M. L., & Schwartz, A. (2012). A Comparison of Logistic Regression, Logic Regression, Classification Tree, and Random Forests to Identify Effective Gene-Gene and Gene-Environmental Interactions. International Journal of Applied Science and Technology, 2(7), 268.

Open Access Copyright (c) 2018 Phenomenon : Jurnal Pendidikan MIPA
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Phenomenon: Jurnal Pendidikan MIPA
Published by Faculty of Science and Technology UIN Walisongo Semarang
Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Phone: +62 815-7502-8676
Website: https://fst.walisongo.ac.id/
Email: phenomenon@walisongo.ac.id

apps